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1 Projection Games and Unique Games

A projection game is as follows. Given is a bipartite graph G = (A,B,E) where A and B are the two
sets of vertices and ΣA,ΣB are two finite sets of lables. For each vertex a ∈ A we have a function va,
va : ΣA → {True,False}, indicating whether a label to a is legal. For each edge e = (a, b) ∈ E, we have a
function πe, πe : ΣA → ΣB which gives a projection from a label to a to a label to b.

We have two players A and B that do not communicate. A verifier picks an edge (a, b) at random and asks
player A for a label for a and player B for a label to b. We say that e is satisfied by labels σa ∈ ΣA, σb ∈ ΣB
if va(σa) = True and πe(σa) = σb.

The goal of the players in the game is to find labelings fA : A→ ΣA, fB : B → ΣB to maximize

Pr
e=(a,b)∈E

[e is satisfied by fA(a), fB(b)]

This maximum is called the value of the game.
A unique game is a projection game where ΣA = ΣB := Σ, va ≡ True ∀a ∈ A and all the projections

are permutations. (i.e. one to one and onto function)

Definition 1 (Label Cover/Unique Label Cover) The algorithmic problem of computing the value
of a given projection game is called Label Cover. Similarly, for unique games, we get Unique Label Cover.

2 The NP-hardness of Label Cover and Unique Label Cover

We will show the following theorem:

Theorem 2
Label Cover and Unique Label Cover are NP-hard.

We will in fact show the stronger claim that any constraint satisfaction problem (CSP) can be reduced
to label cover (and some reduce to unique label cover).

Definition 3 (D-CSP) Given is a set of variables V , a finite alphabet Σ and a set C of constraints, each
depending on D of the variables. The goal is to find an assignment to the variables to maximize the fraction
of constraints satisfied.

Here are some examples:

3SAT Given V = a set of boolean variables, Σ = {True,False}, C is a set of clauses, each depending on
3 variables.

Max-Cut Here V is a set of vertices in a graph, Σ = {0, 1}, C consists of a constraint for every edge that
is satisfied iff the two labels are unequal.

Coloring Here, V is a set of vertices in a graph, Σ is a set of colors and C is a set of constraints, one for
each edge that is satisfied iff the edge is not monochromatic.

All the above examples are NP-hard. We will show that any constraint satisfaction problem can be
reduced to Label-Cover. We will have A = C and B = V . We add an edge from a constraint C to a variable
v iff v appears in C. Also, ΣA = Σk,ΣB = Σ. We define vC(σ1, . . . , σk) to be true iff σ1, . . . , σk is a satisfying
assignment for the constraint.

We define the projection for each edge e = (C, v) ∈ E to be πe(σ1, . . . , σk) = σi if v is the ith variable
that appears in C (we assign an ordering to the variables arbitrarily).

We can adopt the above reduction to give us Unique Label-Cover for MAX-CUT.

1. ΣA = Σ

2. We let πe(σ) = σ if v is the first endpoint of e, and 1− σ otherwise.
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23 Approximating Label Cover and Unique Label Cover

Definition 4 (α-approximation) An algorithm A gives α-approximation to a maximization problem P if
for any input x,

α ·OPT (x) ≤ A(x) ≤ OPT (x)

Lemma 5
There is an efficient algorithm giving 1/|ΣB | approximation for Label-Cover.

Proof: We can assume WLOG that for every vertex a ∈ A, there is some label σa ∈ ΣA such that
va(σa) = True.

For every vertex b ∈ B, pick a label σb ∈ ΣB that satisfies as many of the edges touching B as possible.
This label must satisfy at least 1/|ΣB | fraction of the edges touching b. Thus, counting over all the vertices
b, we satisfy at least 1/|ΣB | fraction of all edges. 2

Note that this algorithm provides a poor approximation for games with large alphabets.

4 Hardness of Approximating Label Cover and Unique Label Cover

Observation: If we can show that for a problem P , given an instance x, such that either P (x) ≥ α or
P (x) < β, it is NP-hard to distinguish between the two cases, then P is NP-hard to approximate within
β/α.

In the mini-course we will show the following theorem about the hardness of approximating Label Cover:

Theorem 6 (Projection Games Theorem)
There is a constant c ∈ (0, 1) such that for ε = ε(n) ≥ 1

nc , there is a k = k(ε), such that it is NP-hard to
distinguish given a projection game with k labels on a graph of size n, whether the value is 1 or at most ε.

Remark 7 1. We will see a proof that gives k(ε) = 2poly( 1
ε ) [M-Raz, 08], while it seems that the truth

should be k(ε) = Θ(1/ε).

2. Parallel repetition gives a reduction from solving SAT on inputs of size N to Label-Cover on inputs
of size NΘ(log 1/ε) [Raz, 94]. We can interpret this as proving the above theorem for every constant ε,
or as proving the above theorem for quasi-NP-hardness. Note that parallel repetition gives a much
better k(ε) = poly(1/ε).

For Unique Label Cover, we have the following conjecture:

Conjecture 8 (Unique Games Conjecture, Khot02) For every constant ε > 0, there is a k = k(ε)
such that given a unique game with k labels, it is NP-hard to distinguish whether the value of the game is
at least 1− ε or at most ε.

Note that it was necessary to replace the 1 with 1− ε for unique games, since checking whether there is
an assignment to a unique game that satifies all edges can be done efficiently.

The Implication of the Projection Games Theorem to Probabilistic Checking of Proofs We will
show a reduction from checking whether a Boolean formula ϕ is satisfiable to approximating Label-Cover.

Interpret the labels to the vertices as a proof for the satisfiability of ϕ. The alphabet of the proof is
ΣA ∪ΣB , and the length of the proof is the number of vertices. We can probabilistically verify the proof as
follows: we pick an edge at random and check whether it is satisfied. Thus, we have only two queries to the
proof. Moreover, by the projection, already after making the first query, we know exactly what should be
the value for the other query!



3We will show Completeness: if ϕ is satisfiable, then there exists a proof that is accepted with probability
1. We will also show Soundness: if ϕ is unsatisfiable, then for any proof, the probability of acceptance is at
most ε.

This means that any mathematical statement, given as a Boolean formula ϕ, can be checked probabilis-
tically with error tending to 0 by reading only two positions in the proof!

The Implications of the Projection Games Theorem to Hardness of Approximation The Pro-
jection Games Theorem is used to derive hardness of approximation results for other problems via a scheme
by Bellare, Goldreich and Sudan (95). This paradigm has been very successful in proving optimal hardness
results for problems such as 3SAT (7

8 + δ), 3LIN ( 1
2 + δ) [H̊astad, 97] and SET-COVER ((1− δ) lnn) [Feige,

95]. For other problems like MAX-CUT ( 16
17 + δ) [H̊astad, 97] and VERTEX COVER (≈ 1.36 [Dinur-Safra,

02]), the results were not optimal. Khot proposed using the Unique Games Conjecture instead of the Pro-
jection Games Theorem, and that led to optimal hardness results for many of these problems under the
conjecture. For example, under the Unique Games Conjecture, we have hardness factor 2− δ for VERTEX-
COVER [Khot-Regev, 03] and hardness factor matching the Gomens-Williamson factor ≈ 0.878 for Max-Cut
[KKMO, 04]. Raghavendra (08) showed that under the UGC, using the above scheme, we can get optimal
hardness for all D-CSPs for constant D and constant alphabet.


