CS 378 — Big Data Programming

Lecture 10

Complex “Writable” Types
AVRO



Review

* Assignment 4 — CustomWritable

 We'll look at implementation details of:
— Mapper
— Combiner
— Reducer
— Supporting classes

* What’s being called where?

— write (), readFields ()
— toString ()



Review

Some changes in the code

Our mapReduce job class
— Extends Configured
— Implements Tool

— Preferred style
Moved logic from main () to run ()
printClassPath () method

— Useful when debugging classpath issues
— Outputs the classpath to stdout (try it and see)



Custom Writables

Last time we discussed custom Writables

Provided by Hadoop

— Coded for us in Java

Defined by us using Google’s protocol buffers
— Protobuf

— Language bindings generated by a compiler

— Uses your definition of the data

AVRO



Protobuf and AVRO

* These two approaches are interesting in that

— They allow us to define complex types via a
schema or IDL (Interface Definition Language)

— They handle all the data marshalling/serialization
— They create "bindings” for various langauges
 AVRO was designed for use with Hadoop

— Writable interface implemented for us

* Protobufs requirea Writable wrapper



Custom Writables

For our custom Writable

We had to implement Writable interface
— readFields ()

— write ()
We had to implement toString () for text output
We had to be able to parse in the text representation

AVRO will implement these things for us



AVRO Basics

* AVRO provides serialization of objects
— RPC mechanism
— Container file for storing objects (schema stored also)
— Binary format as well as text format

 The schema language allows us to define complex
objects

— Schema language uses JSON syntax

— Data structures containing primitive data types

— Complex types: record, enum, array, map, union, fixed
— Details: http://avro.apache.org/docs/1.7.4/spec.html



AVRO Example

{“namespace”: “com.refactorlabs.cs378.assignb”,

“type”: “record”,

“‘name”: “WordStatisticsData”,

“fields”: [
{“name”: “document count”, “type”: “long”},
{“name”: “total count”, “type”: “long”},
{“name”: “sum of squares”, “type”: “long”},
{“name”: “mean”, “type”: [“double”, “null”]},

{“name”: “variance”, “type”: [“double”, “null”]}

}

 How does this get transformed to Java code?
— Add the schema file to your project (filename.avsc)
— Run maven to force AVRO compile (or run maven target from IDE)



AVRO Basics

* Primitive types
— null
— boolean
— 1nt, long
— float, double
— bytes, string

* Union: list of possible types

— If null included, field can have no value



AVRO Basics

e Records
— Name, hamespace
— doc

— aliases
— fields
* Name, doc, type, default, order, aliases
* Enums
— name, hamespace
— aliases, doc
— symbols



AVRO Basics

* Arrays
— items
{“type”: “array”, “items”: “string”}
* Maps
— values
{“type”: “map”, “values”: “string”}
— Keys are assumed to be strings
* Fixed
— Fixed number of bytes



AVRO Basics

With a schema defined, we “compile” it to create
“bindings” to a language

Output is Java source code (Python available too)
— Package and class name as we defined them

So what does this Java class do for us?
— Allows instance to be created and populated
— Allows access to the data stored therein

— Performs serialization
* This is one main reason for using AVRO objects
* AVRO objects implement Writable for use in Hadoop mapReduce
* AVRO objects implement other stuff (toString (), parsing, ...)



AVRO Generated Code

e Accessors for the internal data

— Has methods
* hasDocumentCount ()
* hasTotalCount ()

— Get methods

* getDocumentCount ()
* getTotalCount ()

* Builder class for constructing instances
— Above methods
— Plus set and clear methods



AVRO 1I/0

 Text output
— AVRO text representation is JSON

* Avro container files
— Binary representation that we can read

* The particular format is determined by

— The types of objects we output
— The file output format



Assignment 5

Bootstrap script (control classpath order)

pom.xml provided

— Use this one, as AVRO with Hadoop is version sensitive
— Select AMI version 2.4.7 when defining your cluster

Examples of WordCount provided

Implement an AVRO object for WordStatistics data
— Call it WwordStatisticsData

— Mapper output:
* Text, AvroValue<WordStatisticsData>

— Reducer output:
* AvroKey<Pair<CharSequence>, <WordStatisticsData>>

— OQOutput file format: TextoutputFormat (like WordCountD)



Schema Evolution

As your data changes and you update the message definition

In AVRO objects, the writer’s schema is included, and can be
compared to the reader’s schema

Comparison rules and rules for handling missing fields (in one
schema but not the other) can be found here:
— http://avro.apache.org/docs/1.7.4/spec.htmI#Schema+Resolution



