CS 378 — Big Data Programming

Lecture 16
Join Patterns

Review

* Assignment 7 — User Session
— Reduce side join (impressions and leads)

 Word count on leads (dataSet7Leads.txt)

Review

* Assignment 7 — User Session
— Reduce side join (impressions and leads)

 Questions/issues:

— New impression type: THANK_YOU
— vdp_index for a lead

* Linking lead to page view (VDP)
— Sessions with only:

* Impressions

e Leads

Join Patterns

* Suppose we only wanted sessions with leads
— In practice, a small % of sessions have leads (2% - 5%)

* In our current implementation, we can’t identify
these sessions until we “reduce” them

 How could we avoid transferring all the impressions
for no-lead sessions from mappers to reducers?
— Mappers would need to know which impressions to ignore

Reduce Side Join - Data Flow

Figure 5-1 from MapReduce Design Patterns

' DataSetA |

Ty

| Input | Join (bob, ‘md’)

V| split -r> Mapper [>

I I

I I

I |> I

: |nput : Join # Join * Output

L split —:-} e | > Reducer Part

I |

} |

N

! Input ! Join |

: Split -:-> Mapper .

I I Shuffle Join Output

oo H and Sort P peducer [P| Part

T

} I

I |

: Input ! Join (bob, 37) o outont
Split Mapper > > oin > utpu

: ' : i Reducer Part

I I

N

v | tnput | Join (bob, 33)

V| split -r> Mapper [

I |

I I

Join Patterns

* Could we tell each mapper which userlds to accept?
— We might want the apikey too

* First we’ll need to get that info to each mapper
— Somehow we’ll need to get some info to all mappers
— A list of userlds?

* We still have an issue if that list is too large to hold in
memory

DistributedCache

* The Hadoop class: DistributedCache

* Allows us to specify files that are distributed
to the local file system of each task (mapper
or reducer)

 What do we do about the file/data size?
— Could still be too large to hold in memory

DistributedCache

* |n the driver code (run () method)

— Get the file name from the command line
— Tell Hadoop about this file
— Name(s) conveyed in the configuration object

Path userIdsPath = new Path(args[1l]);

FileStatus[] files =
FileSystem.getConf () .listStatus (userIdsPath);

DistributedCache.addCacheFile (
files[0] .getPath() .toUri (), conf);

DistributedCache

* In the mapper code (setup () method)
— setup () method called once for each mapper
— Get the file name from the configuration
— Load info from the file(s)

URI[] files = DistributedCache.getCacheFiles (

context.getConfiguration());

 What do we do about file/data size?

Bloom Filter

* Probabilistic data structure
— Used to test whether something is in a predefined set

— Can create “false positives”
* Knows for sure that something is not a member of the set
* Sometimes reports membership as true, when it is false

— Never creates “false negatives”
* Never reports “not a member” when it in fact it is a member

* Fixed size in memory
— Train the filter using members of the set

Bloom Filter

e Can add members to the set (further training)
— Can’t remove members

— There is a technique that allows removal

* Parameters of the filter
— Number of bits in a bit array
— Number of independent has functions

 These can be tuned to get a certain false positive rate

Bloom Filter — Data Flow

Figure 3-2 from MapReduce Design Patterns

P —————————

Output N
File

Discarded

Bloom
Filter
Test

Output AN
File

Discarded

Output AN

File

Discarded

,---.
w S
€5 [J
g EH

Reduce Side Join with Bloom Filter

Train the filter
— Read all leads, create the key (userld, apikey)

Specify the trained data file in our driver app (run() method)

Modify the mapper to load the trained Bloom filter
— Setup() method

Reducer — what does it need to do?

