CS 378 — Big Data Programming

Lecture 18
Join Patterns

Review

* Assignment 7 — User Sessions
— Reduce side join (impressions and leads)

 We'll look at implementation details of:
— Parsing logs
— Avro schema
— Populating Avro object with data
— Mapper

— Combiner
e Should we use one? Can we use one?

— Reducer

Join Patterns

* For Assignment 8, we’ll add replicated join to
our session generator (Assignment 7)

— Map from ZIP code to DMA code
— DMA = Demographic Marketing Area (Nielsen)
— Should we do thisinmap () or reduce () ?

e Write sessions to different files

— Based on session characteristics

Review - Replicated Join

 Can be done completely in mappers
— No need for sort, shuffle, or reduce
— Only one of all the files can be “large”
— Files are replicated with DistributedCache

 Restrictions:

— All but one of the inputs must fit in memory
— Can only accomplish an inner join, or

— A left outer join where the large data source is “left” part

Replicated Join - Data Flow

Figure 5-2 from MapReduce Design Patterns

pPemoemwmwy
! DataSetA !
] I
: I : Rep Joi o
' nput | ! > p Join L’ Output
'
it Mapper

E Spl E — ppe Part
] I
P N
0| doput | Rep Join L’ Output
bl split q'__> Mapper Part
] ' >
' |
] I
InY N
s | toput > Rep Join L’ Output
b| Split -". Mapper Part
] I »
] I
] I
=y 2

Input Rep Join Output
[} ——— pu
: Split : Mapper Part
{ |

|

Data

SetB

DistributedCache

* |n the driver code (run () method)
— Get the file name from the command line

— Tell Hadoop about this file

— File(s) conveyed in the configuration object

Path cacheFilePath = new Path(args[3]);
DistributedCache.addCacheFile (
cacheFilePath.toUri (), conf);

DistributedCache

* |n the mapper code (setup () method)

— Get the file names from the configuration object
— Load the data

Path[] paths = DistributedCache.getLocalCacheFiles (

context.getConfiguration())

For each entry in paths, input the data:
Scanner scanner = new Scanner (

new File(path[1i].toString()))

Review - Multiple Outputs

Hadoop class MultipleOutputs

We saw this before with binning
— Map-only pattern

Since we have out user sessions completed in reduce

Can we do the same thing (binning) in reduce output?

— Suppose we want sessions to be “binned” or “partitioned” by
some characteristic of the session

Session Categories

Consider the following categories of sessions:

Levels of user engagement

— “Bouncer” — only one impression in the session
— “Browser” — only SRP (search results page) views
— “Searcher” — at least one “click through”

— “Submitter” — submitted a lead

In the reduce () method, categorize the user session
Output the session to the corresponding name

MultipleOutputs Setup

* |Inthe run () method, specify the named output

MultipleOutputs.addNamedOutput (job, Y“sessionType”,

TextOutputFormat.class, Text.class, Text.class);

* Enable counters for the multiple outputs

MultipleOutputs.setCountersEnabled (job, true);

MultipleOutputs Setup

In the reduce class, define an instance variable
private MultipleOutputs multipleOutputs;

In the setup () method of reducer
public void setup (Context context) {
multipleOutputs = new MultipleOutputs (context);

}
In reduce () method:
multipleOutputs.write (“sessionType”, key, value, category) ;

In the cleanup () method of reducer
public voild cleanup (Context context)
throws InterruptedException, IOException{
multipleOutputs.close ()

