CS 378 — Big Data Programming

Lecture 19
Join Patterns

Review

* Assignment 8 — User Session
— Replicated Join in mappers
— MultipleOutputs from reducer

* Review the details of the assignment

 Questions/issues:

— DistributedCache setup (in run(), and in map class)

Replicated Join

e Suppose we want to join many sources, only one of
which is large

— User sessions (large)
— Map from ZIP codes to DMA (demographic marketing area)

* This is called a replicated join
— All the small files will be replicated to all machines
— All small files must fit in memory
— Files are replicated with DistributedCache

Replicated Join - Data Flow

Figure 5-2 from MapReduce Design Patterns

pPemoemwmwy
! DataSetA !
] I
: I : Rep Joi o
' nput | ! > p Join L’ Output
'
it Mapper

E Spl E — ppe Part
] I
P N
0| doput | Rep Join L’ Output
bl split q'__> Mapper Part
] ' >
' |
] I
InY N
s | toput > Rep Join L’ Output
b| Split -". Mapper Part
] I »
] I
] I
=y 2

Input Rep Join Output
[} ——— pu
: Split : Mapper Part
{ |

|

Data

SetB

DistributedCache

* |n the driver code (run () method)
— Get the file name from the command line

— Tell Hadoop about this file

— File(s) conveyed in the configuration object

Path cacheFilePath = new Path(args[3]);
DistributedCache.addCacheFile (
cacheFilePath.toUri (), conf);

DistributedCache

* |n the mapper code (setup () method)

— Get the file names from the configuration object
— Load the data

Path[] paths = DistributedCache.getLocalCacheFiles (

context.getConfiguration())

For each entry in paths, input the data:
Scanner scanner = new Scanner (

new File(path[1i].toString()))

MultipleOutputs Setup

* Inthe run () method, specify the named output
— “Named output”: label for specific output format
— We can write different files using one “named output”

MultipleOutputs.addNamedOutput (job, Y“userType”,
TextOutputFormat.class, Text.class, Text.class);

* Enable counters for the multiple outputs
— By default they are off, as there may be many counters

MultipleOutputs.setCountersEnabled (job, true);

MultipleOutputs Setup

* |In the reduce class, define an instance variable
— Why an instance variable?

private MultipleOutputs multipleOutputs;

* |Inthe setup () method of reducer
— Create the MultipelOutputs object

public voild setup (Context context) {

multipleOutputs = new MultipleOutputs (context);

MultipleOutputs Setup

* |n reduce () method:
— Here’s where we write to different files (category argument)

multipleOutputs.write (“userType”, key, value, category) ;

* Inthe cleanup () method of reducer

public voild cleanup (Context context) {

multipleOutputs.close() ;

One More Join Pattern

* Suppose we wanted to compare all cars currently
available (for sale) to all other cars

— To identify “similar” cars
— Usage: “I like this car, show me others like it”

* Thisjoinis called “Cartesian Product”

— Compare N items to M items requires NxM comparisons
— Not straightforward to do with map-reduce

Cartesian Product

 To accomplish this join, we’ll need to pair every record
with every other record

* We can start with the approach for composite join

* For composite join, each mapper read two files
— They had the same key set

— The data was sorted by key
— We don’t care about the keys, just the ‘two file input’

Composite Join — Data Flow

Composite E\

Input Split1 «===4

I
]
I
Input 1
I
I
|

Split
Al
; Mapper | Output

D /" Part
Input 1
Split :
B1 '
I

=)
g
w
=
—
~
r
'
'
'
-

I
I
]
Input 1
I
|}
|

|

|

I

I

I

I

I

: Split

- - Output
! : Mapper ey O01P
:

I

I

|

|

B . Part
Input 1
Split :
B2 '
|}

| Composite E\

Input Splitn «===4

J
)
'
Input |
J
)
|

I

|

I

|

I

! Split
' An
: ' Mapper el Output
|

I

I

I

I

h Part
Input

Split

One Mapper, Two Inputs

* For composite join, the key order allowed us to:
— Read each of the two files only once
— Worked very much like merge sort

* For Cartesian product
— For each record in data set 1
— WEeé'll read every record in data set 2
— This pair of records is passed to the mapper

« We'd accomplish this with a custom input format
— RecordReader resets data set 2 for each input of data set 1

Cartesian Product — Data Flow

Data Set A Data Set B
2 Splits 3 Splits
I /l\ . -
nput nput | 8 —) entity)| Output
Split A-1 Split B-1 " EE Mapper Filg
/—\ — d _I
Input Input o 53 > Identity | Output
Split A-1 Split B-2 v § 2 Mapper Fiﬁ;
/_\ — d —[
Input Input o 53 —) Identity | Output
Split A-1 Split B-3 " Eg Mapper Fn‘é
/\ — - _[
Input Input)| 53 —) entity | Output
Split A-2 Split B-1 " ;%g Mapper Filpe
/—\ — , _l
Input Input > ST =P Identity | Output
SplitA-2 Split B-2 v E 2 Mapper FilF:a
/—\ — d _[
Input Input NS —) Identity | Output
Split A-2 Split B-3 > S8 Mapper an

Cartesian Product

* Pairs every record with every other record
— No keys needed
— N x M results, for datasets of size N, M

 Map-only job
e But still expensive to compute

Cartesian Product

 What do we want to output?

— Inverted index?
 To all other vehicles?
* Only some subset?

— Similarity distance/score?

e Aret
—To
—To

nere some ways to filter this data
imit the processing time

imit the amount of data written out

