CS 378 — Big Data Programming

Lecture 20
Filtering Patterns



Review

* Assignment 8 — User Session
— Replicated join, multiple outputs

 Questions/issues:
— DistributedCache issues in AWS



Filtering Patterns

For filtering, we’re not changing the data

We interested in finding subsets of the data
— Examine the data in detail

— “Search”

Sampling a common use of filtering
— Create a representative subset for analysis

Subset based on some relevance criteria



Filtering Patterns

Basic Filtering
— Examine each input record and decide whether it “stays”

Apply a selection predicate to each input record

— Return true if the record is to be kept (in the subset)

MapReduce allows the filter to be applied in parallel

Map-only



Basic Filtering- Data Flow

Figure 3-1 from MapReduce Design Patterns

0 AN

utput
Split

0 AN

utput

Split

0 AN

utput
Split

Input Filter
Split > Mapper
D

Input Filter
Split — Mapper
Input Filter
Split — Mapper
Input > Filter
Split Mapper

0 AN

utput

Split




Basic Filtering

Map-only pattern

Can we combine this with other patterns?
— Other map-only patterns?
— Patterns with reduce logic?

Would we want to use MultipleOutputs?

What sorts of filtering might we apply to sessions?



Basic Filtering

Some common basic filtering uses

grep

Random sample

Score records on some criterion, apply a threshold
Data cleansing



Basic Filtering

Since this is a map-only pattern, the number of
output files will match the number of mappers

If the filtering is strong, these files will be small
What would we do to generate fewer, larger files?

Use fewer mappers, but that would take longer
Use identity mapper to consolidate output



Distributed grep

e grep — Unix filtering utility

* Apply a regular expression to each input record
e Output records that match



Distributed grep

public static class GrepMapper
extends Mapper<Object, Text, NullWritable, Text> {

private String mapRegex = null;

public void setup(Context context) throws IOException,
InterruptedException {

mapRegex = context.getConfiguration().get("mapregex");

}

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

if (value.toString().matches(mapRegex)) {
context.write(NullWritable.get(), value);

}



Simple Random Sampling

* Each input record has equal probability of selection

* Does the selection predicate need to examine the
record?
— If we want the equal probability condition, then no.
— |If we want a biased sample, we can consider the record

* Like basic filtering, consider output file size



Simple Random Sampling

private Random rands = new Random();
private Double percentage;

protected void setup(Context context) throws IOException,
InterruptedException {
// Retrieve the percentage that is passed in via the configuration
// like this: conf.set("filter_percentage"”, .5);
// for .5%
String strPercentage = context.getConfiguration()
.get("filter_percentage");
percentage = Double.parseDouble(strPercentage) / 100.0;
}

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

if (rands.nextDouble() < percentage) {
context.write(NullWritable.get(), value);
}



Bloom Filter

Bloom filter like the basic filter

But selection predicate is:
— Does record contain a value from a predefined set?

This set may be too large to fit in memory

Bloom filter is fixed size, but has false positives



Bloom Filter — Data Flow

Figure 3-2 from MapReduce Design Patterns

P —————————

Output N
File

Discarded

Bloom
Filter
Test

Output AN
File

Discarded

Output AN

File

Discarded

,-------------------------------------------.
w S
€5 [J
g EH



Bloom Filter

* Bloom filter commonly used as map-only
— Output files will have some false positives
— Code examples in the book (pp. 53 —57)

 We discussed how to combine Bloom filter with
reduce-side join
— Bloom filter represented user IDs with leads
— Applied in the mapper
— Reduced the data sent to reduce
— Reduce eliminated false positives (non-lead sessions)



Bloom Filter - Review

* Probabilistic data structure
— Used to test whether something is in a predefined set

— Can create “false positives”
* Knows for sure that something is not a member of the set
* Sometimes reports membership as true, when it is false

— Never creates “false negatives”
* Never reports “not a member” when it in fact it is a member

* Fixed size in memory
— Train the filter using members of the set



Bloom Filter - Review

e Can add members to the set (further training)
— Can’t remove members

— There is a technique that allows removal

* Parameters of the filter
— Number of bits in a bit array
— Number of independent has functions

 These can be tuned to get a certain false positive rate



Top Ten (or Top N)

We know that we want a specific number of outputs
— Based on some evaluation/ranking criterion

An obvious approach is to sort first

But total sort is expensive for large data
— In Hadoop, or in a database

Output should be significantly smaller than the input

How might we accomplish this without sort?



Top Ten (or Top N)

Start with a comparison method
— Given two records, which one is larger

Each mapper finds the top ten from its data
Each mapper sends it top ten to reduce

Reduce finds the final top ten
— How many reducers?



Top Ten (or Top N)

class mapper:
setup():
initialize top ten sorted list

map(key, record):
insert record into top ten sorted list
if length of array is greater-than 10 then
truncate list to a length of 10

cleanup():
for record in top sorted ten list:
emit null,record



Top Ten (or Top N)

class reducer:
setup():
initialize top ten sorted list

reduce(key, records):
sort records
truncate records to top 10
for record in records:
emit record



Top Ten (or Top N)

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

Input
Split

)

Input
Split

TopTen
Reducer

!

Top Ten local top 10
Mapper
TopTen | localtop 10
Mapper
TopTen | localtop 10
Mapper
TopTen | localtop 10
Mapper
TopTen local top 10
Mapper
Top Ten local top 10

Mapper

final top 10
————»

Top 10
Output




Top Ten (or Top N)

* Remember to copy records retained in map ()
— Why?

 What are the key/value output by the mappers?

 Fortop N, if N large, this pattern becomes inefficient
— Single reducer
— Data transferred to reduce
— Reduce input is sorted (expensive for large data)
— No parallel writes from reduce



Distinct
* Want only one record when duplicate records exist

* Map:
— Extract the data of interest (if not the entire record)
— Output this data as the key
— Make the value output by map() NullWritable

* Reduce:
— Simply write out each unique key (the data of interest)
— Can use a large number of reducers



Distinct
Can we use a combiner?

If duplicates are rare, combiner doesn’t help much

If duplicates are common, or co-located, a combiner
can greatly reduce the data transferred

Suppose we want all the data in the record, and
— The compare method is complex
— Can we approach this problem differently?



