CS 378 — Big Data Programming

Lecture 21
Filtering Patterns



Review

* Assignment 8 — User Session
— Replicated join, multiple outputs

 Questions/issues:
— DistributedCache
— MultipleOutputs



Filtering Patterns

Basic filtering

— grep
— Random sampling

 Unbiased, biased

Bloom filter
Top N
Distinct



Bloom Filter - Review

Bloom filter like the basic filter

But selection predicate is:
— Does record contain a value from a predefined set?

This set may be too large to fit in memory

Bloom filter is fixed size, but has false positives



Bloom Filter — Data Flow

Figure 3-2 from MapReduce Design Patterns

P —————————

Output N
File

Discarded

Bloom
Filter
Test

Output AN
File

Discarded

Output AN

File

Discarded

,-------------------------------------------.
w S
€5 [J
g EH



Bloom Filter - Review

* Bloom filter commonly used as map-only
— Output files will have some false positives
— Code examples in the book (pp. 53 —57)

 We discussed how to combine Bloom filter with
reduce-side join
— Bloom filter represented user IDs with leads
— Applied in the mapper
— Reduced the data sent to reduce
— Reduce eliminated false positives (non-lead sessions)



Bloom Filter - Review

* Probabilistic data structure
— Used to test whether something is in a predefined set

— Can create “false positives”
* Knows for sure that something is not a member of the set
* Sometimes reports membership as true, when it is false

— Never creates “false negatives”
* Never reports “not a member” when it in fact it is a member

* Fixed size in memory
— Train the filter using members of the set



Bloom Filter - Review

e Can add members to the set (further training)
— Can’t remove members

— There is a technique that allows removal

* Parameters of the filter
— Number of bits in a bit array
— Number of independent has functions

 These can be tuned to get a certain false positive rate



Top Ten (or Top N)

We know that we want a specific number of outputs
— Based on some evaluation/ranking criterion

An obvious approach is to sort first

But total sort is expensive for large data
— In Hadoop, or in a database

Output should be significantly smaller than the input

How might we accomplish this without sort?



Top Ten (or Top N)

Start with a comparison method
— Given two records, which one is larger

Each mapper finds the top ten from its data
Each mapper sends it top ten to reduce

Reduce finds the final top ten
— How many reducers?



Top Ten (or Top N)

class mapper:
setup():
initialize top ten sorted list

map(key, record):
insert record into top ten sorted list
if length of array is greater-than 10 then
truncate list to a length of 10

cleanup():
for record in top sorted ten list:
emit null,record



Top Ten (or Top N)

class reducer:
setup():
initialize top ten sorted list

reduce(key, records):
sort records
truncate records to top 10
for record in records:
emit record



Top Ten (or Top N)

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

Input
Split

)

Input
Split

TopTen
Reducer

!

Top Ten local top 10
Mapper
TopTen | localtop 10
Mapper
TopTen | localtop 10
Mapper
TopTen | localtop 10
Mapper
TopTen local top 10
Mapper
Top Ten local top 10

Mapper

final top 10
————»

Top 10
Output




Top Ten (or Top N)

* Remember to copy records retained in map ()
— Why?

 What are the key/value output by the mappers?

 Fortop N, if N large, this pattern becomes inefficient
— Single reducer
— Data transferred to reduce
— Reduce input is sorted (expensive for large data)
— No parallel writes from reduce



Distinct
* Want only one record when duplicate records exist

* Map:
— Extract the data of interest (if not the entire record)
— Output this data as the key
— Make the value output by map() NullWritable

* Reduce:
— Simply write out each unique key (the data of interest)
— Can use a large number of reducers



Distinct
Can we use a combiner?

If duplicates are rare, combiner doesn’t help much

If duplicates are common, or co-located, a combiner
can greatly reduce the data transferred

Suppose we want all the data in the record, and
— The compare method is complex
— Can we approach this problem differently?



Assignment 9 - Filtering

e Start with Assignment 8 - remove DistributedCache

* For our four session categories
— Keep all submitters
— Searchers by: output only those with Carfax actions
— Browsers: random sample at %
— Bouncers: random sample at % / 10

e Passin the % from the command line



