CS 378 — Big Data Programming

Lecture 22
MetaPatterns



Review

* Assignment 9 — Filtering
— Filter searcher sessions (Viewed Carfax report)

— Biased random sample of:
* Bouncer, browser, searcher

 Questions/issues:
— Any mapper side filtering?
— For searcher sessions: apply random filter first, or second?
— Values passed via Configuration
— Random output: how is this graded?



MetaPatterns

* Most big data processing will use multiple jobs

* “Data pipelines” are common
— Multiple map-reduce jobs
— Output of one job is input to the others

— The output can be an end in itself

 Why are multiple jobs required?



MetaPatterns

 We'll discuss two classes of meta-patterns

* Job chaining
— Multiple jobs solving a multi-stage problem
— When processing cannot be done in one job

— When one output is input to multiple jobs

* Job merging

— Combining multiple activities into the same job



Job Chaining

e Since job chaining is common, some tools exist or are
under development to help
 Examples:
— QOozie
— Azkaban
— Luigi
 For more details, see:

— http://www.slideshare.net/jcrobak/data-engineermeetup-201309
— http://www.crobak.org/2012/07/workflow-engines-for-hadoop/




Workflow Issues

Dependency structure/management
Monitoring

Error recovery

Reporting

Restart



Job Chaining

e Basic notion for job-chaining: dependency graph
— Explicitly represented in tools
— A concept that’s represented in the code we’ll consider

* Dependency graph:
— Directed, acyclic graph (DAG) where:
— Nodes represent data sets, and processing steps
— Edges represent data flows (dependencies)



Job Chaining

* For single map-reduce jobs, we selected the number
of mappers and reducers

— Parallelism
— Controlling the amount of data a reducer receives

 When chaining jobs, we must consider file sizes
— They should be on the order of one block size or more
— If output files are small, use CombineFileInputFormat



Job Chaining

* Consider what we do in run () of a single job
— Define input info for a job

* Input file location(s)
 Input format type, key/value types
* Mapper class(es)

— Define output info for a job
e Output location(s)
e Output format type, key/value types
* Reducer class



Job Chaining

If we want our Java app to launch multiple jobs, what
do we need to do?

Create and configure multiple Job instances

Connect output of one job to input of another job
— How?
Launch each job, wait for it to complete

— How?



Job Methods

e So far we’ve used:
— jJjob.waitForCompletion ()

e Other methods on Job:

— 1sComplete ()

— 1sSuccessful ()

— kil1lJob ()

— mapProgress ()

— reduceProgress ()
— submit ()

— getCounters ()



Job Chaining

Suppose output of first job is input to two jobs
— These jobs can be run in parallel

How would we launch two jobs to run in parallel?

How would we monitor their progress?

If another job combines the output of these two jobs
— How would we know when to start this new job?
— What possible scenarios do we need to consider/handle?



Job Chaining - Approaches

* Control/manage jobs explicitly in run () method
* Shell scripts

e JobControl and ControlledJob classes
— Donein run () method
— Some benefits, some restrictions



Job Chaining - Example

* Read log files and create sessions
— Output into four category files

* |In parallel:
— Read bouncer sessions, count impression types
— Read browser sessions, calculate mean, stdev listing views
— Read searcher sessions, calculate VDP click through rate



