CS 378 — Big Data Programming

Lecture 27
Hadoop Ecosystem



Assignment 12

* Compute statistics on price ranges

» Utilize multiple patterns/techniques
— Filtering, inverted index
— Reduce-side join
— Summarization
— Job chaining

e Questions/issues



Hadoop Ecosystem

* Many other tools have been implemented on

— Hadoop
— HDFS (Hadoop Distributed File System)

 We'll discuss a few
— HBase
— ZooKeeper
— Pig, Impala
— Hive



HBase

e Column-orient database

— Implemented on top of HDFS
— Distributed

* Goalis to scale to very large datasets

— With real-time read/write access



Column-oriented Database

* Table cells are the unit of access
— Content is uninterpreted array of bytes
— A cell versioned (can have multiple versions)

* Table cell is accessed by

— Row, column, and version (often a timestamp)

* Columns are grouped into families



Column-oriented Database

New column family members can be added

Column family members are stored together

For best performance, family members should
be accessed together

Rows can be subset into regions



Hbase

Figure 13-1 from Hadoop The Definitive Guide

Master

ZooKeeper

Regionserver Regionserver Regionserver




/ooKeeper

* Messaging and synchronization in a
distributed environment

— Distributed queues, locks

— Leader election among a group of peers
* High availability (tolerates failures)

* Loosely coupled interactions
— Rendezvous mechanism



Pig

* Higher level data structures and operations
— Higher level than Java code for map-reduce job
* Language: Pig Latin
— Operations and transformations on data

— Pig converts these to map-reduce jobs for you

* Think of it as a query language for data in HDFS



Pig Examples

Summarization

SQL
The Numerical Aggregation pattern is analogous to using aggregates after a GROUP
BY in SQL:

SELECT MIN(numericalcoll), MAX(numericalcoll),
COUNT(*) FROM table GROUP BY groupcol2;

Pig
The GROUP ... BY expression, followed by a FOREACH .. GENERATE:

b = GROUP a BY groupcol2;
c = FOREACH b GENERATE group, MIN(a.numericalcoll),
MAX(a.numericalcoll), COUNT_STAR(a);



Pig Examples

Filtering

SQL
The filter pattern is synonymous to using the WHERE clause in a SELECT * statement.
The records stay the same, but some are simply filtered out. For example:

SELECT * FROM table WHERE value < 3;
Pig
The FILTER keyword.

b = FILTER a BY value < 3;



Pig Examples

Top 10

SQL
In a traditional and small SQL database, ordering may not be a big deal. In this case,
you would retrieve data ordered by the criterion for which you want the top ten,
then take a limit. You could follow this same approach in MapReduce, but as you
will find out in later patterns, sorting is an expensive operation.

SELECT * FROM table ORDER BY col4 DESC LIMIT 10;
Pig
Pig will have issues performing this query in any sort of optimal way. The most
straightforward pattern is to mirror the SQL query, but the ordering is expensive

just to find a few records. This is a situation in which you’ll find major gains in using
Java MapReduce instead of Pig.

B = ORDER A BY col4 DESC;
C = LIMIT B 10;



Pig Examples

Distinct

SQL
SELECT DISTINCT performs this operation for us in SQL.

SELECT DISTINCT * FROM table;
Pig
The DISTINCT operation.

b = DISTINCT a;



Pig Examples

Binning

Pig
The SPLIT operation in Pig implements this pattern.

SPLIT data INTO
eights IF coll == 8,
bigs IF coll > 8,
smalls IF (coll < 8 AND coll > 0);



Pig Examples

Sorting

SQL
Ordering in SQL is pretty easy!
SELECT * FROM data ORDER BY coli;
Pig
Ordering in Pig is syntactically pretty easy, but it’s a very expensive operation. Be-

hind the scenes, it will run a multi-stage MapReduce job to first find the partitions,
and then perform the actual sort.

c = ORDER b BY coli;



Pig

Pig Examples

Sorting

Pig has native support for a replicated join through a simple modification to the
standard join operation syntax. Only inner and left outer joins are supported for
replicated joins, for the same reasons we couldn’t do it above. The order of the data
sets in the line of code matters because all but the first data sets listed are stored in-
memory.

huge = LOAD 'huge _data' AS (h1,h2);

smallest = LOAD 'smallest_data' AS (ss1,ss2);

small = LOAD 'small_data' AS (s1,s2);
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING 'replicated’;



Impala

* |Interactive SQL for data in HDFS, HBase

* SQL processing engine
— Parallel execution
— Horizontal scaling

e Runs on each data node

— Direct access to HDFS, HBase (no map-reduce)



Hive
* Data warehouse on top of Hadoop
e SQL for access
— Hive converts a query into a map-reduce steps

e Various Hive clients are available
— JDBC, ODBC, Thrift, ...



