CS 378 — Big Data Programming

Lecture 3
Anatomy of a Hadoop
Map-Reduce Program



Assignment 1 Update

JAR file build issues?
What’s in pom.xml|

Running the example on AWS
— The cluster and job monitor page
— Log files: controller, syslog

Questions?



Map-Reduce Code

main() method

Job object - Collects up all the specs for the job
— Where is the JAR file to distribute?
— Type of the output pair
— Mapper and Reducer classes
— Input and output file formats
— Input file(s), output directory

Configuration object — forwarded to map(), reduce()

— Job level parameters communicated via this object



Map-Reduce Code

* MapClass

— Extends Mapper, declaring the input and output
pair types for the map() method

* map() method
— Arguments: input pair, and the Context
— Output done via the context object



Map-Reduce Code

e ReduceClass

— Extends Reducer, declaring the input and output
pair types for the reduce() method

* reduce() method
— Arguments: input pair, and the Context
— Output done via the context object



Map-Reduce Code

map() and reduce() input pair and output pair types

Derived from Writable

— readFields(Datalnput in)
— write(DataOutput out)

Text, IntWritable, LongWritable all implement Writable
— As do many other types, some of which we will use

Possible to design your own class that implements
Writable



Map-Reduce Code

 Combiner — combines multiple outputs from a Mapper
before shuffle

* Input and output pair types must be the same.
— Why?

e When can a combiner be used?

— Map output can be processed (“combined”) even through we
do not see all values associated with the key

— Combiner output can be interpreted by reducer

— Word count, and many other counting applications can use a
combiner.



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




Map-Reduce Code

 For WordCount, suppose we used a hash table to
collect word counts over multiple input records.

* Why wouldn’t this work?



