CS 378 — Big Data Programming

Lecture 4
Summarization Patterns



Review

* Assignment 1 — Questions?
— Using maven
— Using AWS

* Question from previous class:

— (Dean paper): Semantics under failure when map/reduce
deterministic versus non-deterministic



Simple Debugging

* Counters
— controller

— syslog

e Custom counters

— context.getCounter (group, counter) .increment (1L) ;

— group and counter are strings



Summarization

* Counting things is a common map-reduce task
— Word count was a simple example

— Min, max, mean, median, variance, ...

* By making the “things” being counted keys,
MapReduce is doing much of the work for us

* In WordCount, the words counted are the keys



Summarization

Simple and useful pattern

Mappers do local counts, reducers sum up
Combiners are very useful here

Usually collecting multiple statistics



Assignment 2 — Word Statistics

* Input:
— Each input record/value is a complete email
— Newlines in the email replaced with tab

e QOutput (similar to word count, but more numbers):
— For each word in the email:
— Number of documents/emails containing the word

— Mean

* In emails where the word appears, what is the average number of
times it appears

— Variance
* In emails where the word appears, what is the variance



Word Statistics

 What do we need to calculate mean, variance?
* Mean is straightforward

e Variance is less obvious
— We can get there with a little algebra
— “Mean of square minus square of mean”



Multiple Output Values

* |If we are to output multiple values for each key
— How do we do that?

* Remember, our object containing the values needs
to implement the Writable interface

* We could use Text
— Value is a string of comma separated values
— Have to convert our counts to strings, build the full string
— Have to parse the string on input (not hard)



Multiple Output Values

* Suppose we wanted to implement a custom class

* Callit: LongArrayWritable
— How would we implement this class?
— Needs to implement the Writable interface

— write () method:
e Output the length of the array
e QOutput that many long values

— readFields () method:
* Read the length of the array
e Read that many long values



Multiple Output Values

* Our LongArrayWritable class could use some
other methods and instance data

— An instance variable to hold the values.
 What would its type be?

— A method to set the values (an array)
— A method to get the values (an array)

— A method to sum to instances?
* What would the signature be?



Multiple Output Values

 Hadoop provides a class to facilitate this:
* ArrayWritable

* |n additiontowrite () and readFields():
— Writable[] get()
— Class getValueClass ()
— volid setWritable (Writable[] wvalues)
— Object toArray ()
— String[] toString()



Multiple Output Values

* Ifour ArrayWritable objectis input to a reducer, we
need to tell Hadoop how to set the value to the proper type

* To do this, we’ll extend this class to LongArrayWritable

public class LongArrayWritable extends ArrayWritable
public LongArrayWritable() ({
super (LongWritable.class) ;



Multiple Output Values

* We can add some methods to the LongArrayWritable
class to make it easier to use.

public long[] getValueArray () ({
Writable[] wValues = get();
long[] values = new long[wValues.length];
for (int i = 0; 1 < values.length; i++) {

values[i] = ((LongWritable)wValues[i]) .get();
}

return wvalues;



Word Statistics

* Mapper will output what values?

* Reducer will calculate non-integer values
— Mean, variance

 So we’ll need to handle float/double values

— Do we need to create DoubleArrayWritable
for reduce output?



Word Statistics

e Combiner will be useful for computing word statistics

e Can we reuse the reducer class for the combiner?

— What are the combiner inputs and outputs?



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




