CS 378 — Big Data Programming

Lecture 5
Summarization Patterns

Review

* Assignment 2 — Questions?

* Interested in using Google collection classes?
— Now called Guava

— pom.xml for guava dependency available on the
assignment 2 description on Canvas

e How to find documentation for Java classes

Multiple Output Values

From Lecture 4

* We can add some methods to the LongArrayWritable
class to make it easier to use.

public long[] getValueArray () ({
Writable[] wValues = get();
long[] values = new long[wValues.length];
for (int i = 0; 1 < values.length; i++) {

values[i] = ((LongWritable) (wValues[i])) .get()
}

return wvalues;

Summarization

e Other summarizations of interest
— Min, max, mean

 Suppose we are interested in these metrics for email
length (number of characters)

— If the length of emails is normally distributed, then median
will be very near the mean

— If the distribution of email lengths is skewed, the mean
and median will be very different

Summarization

Min and max are straightforward

For each email, output two values

— Min length (the length of this email)
— Max length (the length of this email)
— Key?

Combiner will get a list of value pairs

— Select the min, max, output that value pair
— Key?

Reducer does the same

Summarization

e Median
— Get all the values, sort them, then find the middle

e Since our computation is distributed, we done see all
values?

 Send them all to one reducer?
— Not utilizing map-reduce
— Data sizes likely too large to keep in memory

Summarization

Median — one approach is to keep the unique email
lengths, and the frequency of each length

Mapper output:
— Value is one pair on numbers: < email length, 1 >

Combiner gets a list of these pairs, updates the count
for recurring lengths

Reducer does the same, then identifies the median

Summarization

* Median
— Hadoop provides the SortedMapWritable class
— Associates a frequency count with a length
— Keeps the lengths in sorted order

* See the example in Ch. 2 of Map-Reduce Design
Patterns

Counters

 Hadoop Map-Reduce infrastructure provides
counters
— Accessed by group name, counter name

— Cannot have a large number of counters
e Can’t use this to do word count

— A few tens of counters can be used

 Counters are stored in memory on JobTracker

Counters

Figure 2-6, MapReduce Design Patterns

Counting
Mapper

TaskTracker

Job Success ST
counting TaskTracker JobTracker GG
Mapper Counter C

CounterD

Counting
Mapper

TaskTracker

How Hadoop MapReduce Works

e Since we’ve seen some terms like

— Job
— JobTracker
— TaskTracker

e Let’s understand what they do

* Details from Ch. 6, Hadoop: The Definitive Guide 3™
Edition

How Hadoop MapReduce Works

Figure 6-1, Hadoop: The Definitive Guide 3™ Edition

MapReduce e
program W It e — -p JobTracker .s |n|t|a|llE]0b

‘...

E - : b:retrieve)

E client node | IanSﬁ!{f{.,» : jobtracker node
. 3: copy job : 7: heartbeat

| resources (returns task) i

| \ ’

| Shared *

: FlleSystem R TaskTracker

, (e.q., HDFS) 8: retrieve job

) Tesources : ¢
: 9: launché

! A 4

! child JVM

E Child

: 10: run?

! 4

E MapTask

! or

| ReduceTask

! tasktracker node

Job Submission

* Job submission
— Input files exist?
— Output directory exist?

— Copy resources to HDFS
* JAR file
e Configuration file
* Computed file splits

Job Tracker

Creates task (work to be done)
— Map task for each input split
— Requested number of reduce tasks
— Job setup, job cleanup task

Map tasks are assigned to task trackers that are “close”
to the input split location

— Data local preferred
— Rack local next

Reduce task can go anywhere. Why?

Scheduling algorithm orders the tasks

Task Tracker

* Configured for a # of map and reduce tasks

* Periodically sends a “heartbeat” to job tracker
— “I'm still alive”
— “Ready for new task”

* For a new task:
— Copy files to local file system (JAR, configuration)
— Launch a new JVM (TaskRunner)
— Load the mapper/reducer class and call its method
— Update the task tracker of progress

Task Progress

* Mapper

— What proportion of the input has been processed

 Reducer — more complicated

— Sort, shuffle, and reduce are considered here

— Progress is an estimate of how much of the total work has
been done

Shuffle

Figure 6-6, Hadoop: The Definitive Guide 3" Edition

map task

input
split

partitio

sort, an

bufferin "’

spill to disk

“Sort” Reduce
phase phase

reduce task

-
u..
)
e

-
-
)
-
-
ay
eay

-
.....
.

MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

