CS 378 — Big Data Programming

Lecture 9
Complex “Writable” Types



Review

* Assignment 4 - CustomWritable

 Questions/issues?



Hadoop Provided Writables

 We've used several Hadoop Writable classes
— Text
— LongWritable

— ArrayWritable
* Extended as LongArrayWritable, DoubleArrayWritable

* Hadoop provides many other classes
— Wrappers for all Java primitive types
— Some for Hadoop usage (TaskTrackerStatus)
— Others for us to extend (MapWritable)



User Defined Writables

 Hadoop provided classes cover commonly
used types and data structures

 But we’re likely to need more application
specific data structures/types
— For example, WordStatistics

* We can define these one by one
— Must implement the Writable interface

— This will become tedious



User Defined Data Types

* Where might we look for a solution?
— How are ad hoc types transferred elsewhere?

 Web formats for data structures
— XML, JSON
— Plus: Human readable, self describing
— Minus: verbose, serialization is slower

e Java serialization
— We have to write the serialization code
— Again tedious, as data types get complex



User Defined Data Types

e RPC mechanisms

— Marshall data in objects to be transferred to a
“remote” procedure (no shared memory)

— Usually procedure calls share memory
e Java serialization is one such mechanism
e Some others we’ll look at:

— Google protocol buffers (protobufs)
— AVRO



Protobuf and AVRO

* These two approaches are interestin

g in that

— They allow us to define complex types via a

schema or IDL (Interface Definition Lan

guage)

— They handle all the data marshalling/serialization

— They create "bindings” for various langauges

 AVRO was designed for use with Hac

oop

* Protobufs requireaWritable wra

oper

— May be provided now, wasn’t a few years ago



Protobuf Basics

* Protocol buffers (protobufs) used extensively at

Google as the RPC mechanism

— Multiple language support (Java, C++, Python)
— Used in the Google map-reduce framework

 The schema language (IDL) defines “messages”
— Data structures containing primitive data types
— Required or optional
— Repeated (array)
— Embedded message



Protobuf Example

package stats;
option java package = “com.refactorlabs.cs378.utils”;

option java outer classname = “WordStatisticsProto”;

message WordStatistics {

required int64 document count = 1;
required into4 total count = 2;
required 1int64 sum of squares = 3;
optional double mean = 4;

optional double variance = 5;



Protobuf Basics

Protobuf fields

— Scalars

— Enumerations

— Local message types

Fields can be required or optional
— Required field will always be present (and take up space)
— Optional fields take no space when they have no value

Fields can be repeated
Fields can have a default value



Protobuf Basics

With a protobuf defined, we “compile” it to create
“bindings” to a language

Output is Java source code

— Package and class name as we defined them

So what does this Java class do for us?
— Allows instance to be created and populated
— Allows access to the data stored therein

— Performs serialization

* This is one main reason for using protobufs
* WEe'll need to wrap thisinaWritable to useitin mapReduce



Protobuf Generated Code

e Accessors for the internal data

— Has methods
* hasDocumentCount ()
* hasTotalCount ()

— Get methods

* getDocumentCount ()
* getTotalCount ()

* Builder class for constructing instances
— Above methods
— Plus set and clear methods



Protobuf Generated Code

Repeated fields have some extra methods
— count () method

— Get and Set methods that take an index

— add () method

— addAll () method

Instances are constructed with the Builder class
Once created, the instance is immutable

Enums and embedded message types become
nested enums or classes



Protobuf I/0

 Protobufs do serialization via these methods

— writeTo (OutputStream out)

— parseFrom (InputStream in)

* TomakeitWritable, we can wrap the protobuf
object with a class that:
— Adaptswrite () towriteTo (), and

— Adapts readFields () toparseFrom/()

e Example:



Schema Evolution

As your data changes and you update the message definition

Old Java code can read and use data written under the new
schema

— It simply doesn’t see the new fields

New Java code can read and use data written under the old
schema

— New fields added must be optional

— The has() methods can be used to determine where new fields are
unpopulated



Other Protobuf Benefits

e Efficient in terms of space
— Optional fields with no value — not in the output
— Data values compressed

e Efficient in terms of speed
— Object construction from input is fast
— Object contents to output is fast

 But AVRO is more widely used, so we’ll examine it in
the next class



Protobuf Basics

 More info one protocol buffers can be found here:
— https://developers.google.com/protocol-buffers/docs/javatutorial
— http://talks.spline.de/slides/protobuf.pdf

* Note: These references do not address using protobufs with
Hadoop map-reduce



