CS 378 — Big Data Programming

Lecture 10

Complex “Writable” Types
AVRO

CS 378 - Fall 2015 Big Data Programming



Review

* Assignment 4 — CustomWritable

 We'll look at implementation details of:
— Mapper
— Combiner
— Reducer
— Supporting classes

* What’s being called where?

— write (), readFields ()
— toString ()



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

CS 378 - Fall 2015 Big Data Programming



Custom Writables

Last time we discussed custom Writables

Provided by Hadoop

— Coded for us in Java

Google’s protocol buffers

AVRO
— Language bindings generated by a compiler
— Uses your definition of the data



Custom Writables

For our custom Writable

We had to implement Writable interface
— readFields ()

— write ()
We had to implement toString () for text output
We had to be able to parse in the text representation

AVRO will implement these things for us



AVRO Example

{“namespace”: “com.refactorlabs.cs378.assignd”,
“type”: “record”,

“name”: “WordCountData”,

“fields”: |

{“name”: “word count”, “type”: “long”} ]

* How does this get transformed to Java code?
— Add the schema file to your project (filename.avsc)
— Run maven to force AVRO compile
* Or run maven target in your IDE



AVRO Generated Code

e Accessors for the internal data

— Has methods
* hasWordCount ()

— Get methods
* getWordCount ()

* Builder class for constructing instances

— Above methods
— Plus set and clear methods



AVRO — Builder Classes

 Why construct instances using the Builder class?

* You AVRO schema contains constraints
— Value types: enforced by accessors
— Required vs. optional values (union): checked by build

* Incremental construction

— For arrays and maps, data can be added
incrementally



AVRO 1I/0

 Text output
— AVRO text representation is JSON

* Avro container files
— Binary representation that we can read as input

* The particular format is determined by

— The types of objects we output
— The file output format



Assignment 5

Bootstrap script (control classpath order)

— We want a specific version of AVRO

— This script will place your JAR file at the start of the classpath
— Add this as a bootstrap “custom action” in your cluster

pom.xml provided
— Use this one, as AVRO with Hadoop is version sensitive
— Select AMI version 3.10.0 when defining your cluster

Example use of AVRO: WordCountA.java

All files on Canvas / Files / Assighment 5



Assignment 5

* Implement an AVRO object for WordStatistics data
— CallitWwordStatisticsData

— Mapper output:
* Text, AvroValue<WordStatisticsData>

— Reducer output:
* Text, AvroValue<WordStatisticsData>

e See code in WordCountA

— Output file format: TextOutputFormat

— Set JAR to beginning of classpath
» conf.setBoolean(MRJobConfig. MAPREDUCE JOB _USER CLASSPATH_FIRST, true);

— Calls using AvroJob



