CS 378 — Big Data Programming

Lecture 4
Summarization Patterns



Review

* Assignment 1 — Questions?
— Using maven
— Using AWS
— Hadoop Java API



Simple Debugging

* Counters
— controller

— syslog

e Custom counters

— context.getCounter (group, counter) .increment (1L) ;

— group and counter are strings



Summarization

* Counting things is a common map-reduce task
— Word count was a simple example

— Min, max, mean, median, variance, ...

* By making the “things” being counted keys,
MapReduce is doing much of the work for us
— Hadoop sorts and groups data by key

* In WordCount, the words counted are the keys



Mapper

Summarization

Figure 2.4, Map Reduce Design Patterns (edited)

(key, summary field)

Mapper

key, summary field
(key y );

(key, summary field)
(key, summary field) >

Mapper

(key, summary field)
(key, summary field) >

Partitioner

group A Summary)
Reducer |—'summary)

Partitioner

(group B, summary)

Reducer (group D, summary)

Partitioner




Summarization

Simple and useful pattern

Mappers do local counts, reducers sum up
Combiners are very useful here

Usually collecting multiple statistics



Assignment 2 — Word Statistics

* Input:
— Each input record/value is a paragraph of a document

e QOutput (similar to word count, but more numbers):
— For each word in the document, output:
— Number of paragraphs containing the word

— Mean

* |In paragraphs where the word appears, what is the average
number of times it appears

— Variance
* In paragraphs where the word appears, what is the variance



Word Statistics

 What do we need to calculate mean, variance?

* Mean is straightforward

— Total number of occurrences of the word
— Number of paragraphs containing the word

e Variance is less obvious

— We can get there with a little algebra
— “Mean of square minus square of mean”



Designing a Map-Reduce App

* We need to answer these questions:
— What are the map input key and value types?
— What does the mapper do?
— What are the map output key and value types?
— Can we use a combiner?
— What does the reducer do?
— What are the reduce output key and value types?

e And: What are the file formats?

— For now we are using text files, we’ll expand our options
later



Multiple Output Values

* If we are to output multiple values for each key

— How do we do that?
— WordCount output a single number as the value

* Remember, our object containing the values needs
to implement the Writable interface

* We could use Text
— Value is a string of comma separated values
— Have to convert our counts to strings, build the full string
— Have to parse the string on input (not hard)



Multiple Output Values

* Suppose we wanted to implement a custom class

* Callit: LongArrayWritable
— How would we implement this class?
— Needs to implement the Writable interface

— write () method:
e Output the length of the array
e QOutput that many long values

— readFields () method:
* Read the length of the array
e Read that many long values



Multiple Output Values

* Our LongArrayWritable class could use some
other methods and instance data

— An instance variable to hold the values.
 What would its type be?

— A method to set the values (an array)
— A method to get the values (an array)

— A method to sum (combine) the instances?
* What would the signature be?



Multiple Output Values

 Hadoop provides a class to facilitate this:
* ArrayWritable

* |n additiontowrite () and readFields():
— Writable[] get()
— Class getValueClass ()
— volid setWritable (Writable[] wvalues)
— Object toArray ()
— String[] toStrings ()



Multiple Output Values

* Ifour ArrayWritable objectis input to a reducer, we
need to tell Hadoop how to set the value to the proper type

* To do this, we’ll extend this class to LongArrayWritable

public class LongArrayWritable extends ArrayWritable
public LongArrayWritable() {
super (LongWritable.class) ;



Multiple Output Values

* We can add methods to LongArrayWritable
class to make it easier to use.

public long[] getValueArray () ({
Writable[] wValues = get()
long[] values = new long[wValues.length];
for (int i = 0; i < values.length; i++) ({

values[i] = ((LongWritable)wValues[i]) .get():
}

return values;



Word Statistics

* Mapper will output what values?

* Reducer will calculate non-integer values
— Mean, variance

 So we’ll need to handle float/double values

— Do we need to create DoubleArrayWritable
for reduce output?



Word Statistics

e Combiner will be useful for computing word statistics

e Can we reuse the reducer class for the combiner?

— What are the combiner inputs and outputs?



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




