CS 378 — Big Data Programming

Lecture 4
Summarization Patterns



Review

* Assignment 1 — Questions?
— Using maven
— Using AWS
— Hadoop Java API



Simple Debugging

* Counters
— controller

— syslog

e Custom counters

— context.getCounter (group, counter) .increment (1L) ;

— group and counter are strings



Summarization

* Counting things is a common map-reduce task
— Word count was a simple example

— Min, max, mean, median, variance, ...

* By making the “things” being counted keys,
MapReduce is doing much of the work for us
— Hadoop sorts and groups data by key

* In WordCount, the words counted are the keys
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Figure 2.4, Map Reduce Design Patterns (edited)
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Summarization

Simple and useful pattern

Mappers do local counts, reducers sum up
Combiners are very useful here

Usually collecting multiple statistics



Assignment 2 — Word Statistics

* Input:
— Each input record/value is a paragraph of a document

e QOutput (similar to word count, but more numbers):
— For each word in the document, output:
— Number of paragraphs containing the word

— Mean

* |In paragraphs where the word appears, what is the average
number of times it appears

— Variance
* In paragraphs where the word appears, what is the variance



Word Statistics

 What do we need to calculate mean, variance?

* Mean is straightforward

— Total number of occurrences of the word
— Number of paragraphs containing the word

e Variance is less obvious

— We can get there with a little algebra
— “Mean of square minus square of mean”



Designing a Map-Reduce App

* We need to answer these questions:
— What are the map input key and value types?
— What does the mapper do?
— What are the map output key and value types?
— Can we use a combiner?
— What does the reducer do?
— What are the reduce output key and value types?

e And: What are the file formats?

— For now we are using text files, we’ll expand our options
later



Multiple Output Values

* If we are to output multiple values for each key

— How do we do that?
— WordCount output a single number as the value

* Remember, our object containing the values needs
to implement the Writable interface

* We could use Text
— Value is a string of comma separated values
— Have to convert our counts to strings, build the full string
— Have to parse the string on input (not hard)



Multiple Output Values

* Suppose we wanted to implement a custom class

* Callit: LongArrayWritable
— How would we implement this class?
— Needs to implement the Writable interface

— write () method:
e Output the length of the array
e QOutput that many long values

— readFields () method:
* Read the length of the array
e Read that many long values



Multiple Output Values

* Our LongArrayWritable class could use some
other methods and instance data

— An instance variable to hold the values.
 What would its type be?

— A method to set the values (an array)
— A method to get the values (an array)

— A method to sum (combine) the instances?
* What would the signature be?



Multiple Output Values

 Hadoop provides a class to facilitate this:
* ArrayWritable

* |n additiontowrite () and readFields():
— Writable[] get()
— Class getValueClass ()
— volid setWritable (Writable[] wvalues)
— Object toArray ()
— String[] toStrings ()



Multiple Output Values

* Ifour ArrayWritable objectis input to a reducer, we
need to tell Hadoop how to set the value to the proper type

* To do this, we’ll extend this class to LongArrayWritable

public class LongArrayWritable extends ArrayWritable
public LongArrayWritable() {
super (LongWritable.class) ;



Multiple Output Values

* We can add methods to LongArrayWritable
class to make it easier to use.

public long[] getValueArray () ({
Writable[] wValues = get()
long[] values = new long[wValues.length];
for (int i = 0; i < values.length; i++) ({

values[i] = ((LongWritable)wValues[i]) .get():
}

return values;



Word Statistics

* Mapper will output what values?

* Reducer will calculate non-integer values
— Mean, variance

 So we’ll need to handle float/double values

— Do we need to create DoubleArrayWritable
for reduce output?



Word Statistics

e Combiner will be useful for computing word statistics

e Can we reuse the reducer class for the combiner?

— What are the combiner inputs and outputs?



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide




