CS 378 – Big Data Programming

Lecture 20

MetaPatterns

Review

- Assignment 9 Job Chaining
 - Filter and bin sessions (same as assignment 8)
 - 3 jobs that process submitter, sharer, clicker bins
 - Can use the same map class
 - Compute stats for click types over all sessions, not just sessions containing the click
 - Fourth job aggregate click stats
 - Across the 3 session types
 - Across all click types (extra credit)

MetaPatterns

- We've discussed: Job chaining
 - Multiple jobs solving a multi-stage problem
 - When processing cannot be done in one job
 - When one output is input to multiple jobs

Implemented in the run() method

Job Chaining

Data pipelines often produce temporary files

- Output from one job that is input to another
 - As part of the pipeline, these files should be cleaned up
 - But you may want to keep them until the pipeline completes
 - Once complete, temp files can be deleted

Job Chaining - Scripting

- Another approach to managing job flow
 - Scripting languages
 - Shell scripts, python, ...

Benefits

- Changing the job flow does not require compilation
- Script can use services and systems that are not Java
- Easy to build flows between existing jobs

- Basic patterns that can be "folded":
 - Each record is submitted to multiple mappers
 - Combine these multiple map phases
 - Or to a reducer, then to a mapper
 - Push the map logic "upstream"
- Major benefit reduce the amount of data moving through a data pipeline
 - Reduce disk I/O
 - Reduce data transfer (shuffle) over the network

Patterns that can benefit from folding

- In the data pipeline
 - Adjacent map phases might be merged
- Example:
 - Map only job, like a replicated join
 - Followed by map and reduce job
- Avoid writing the output of job one by joining the map logic of job one and two

Patterns that can benefit from folding

A data pipeline ends with a map-only job

 Avoid reading the output of the penultimate job by merging the map logic of the final job into the previous reduce step

- Split map phases between operations that
 - Decrease the amount of data (filtering)
 - Increase the amount of data (enrichment)
- Push the minimizing operation into previous reducer
 - This can reduce the amount of data transferred
- Generally, try to filter (minimize) data early

Classes for Chaining

- ChainMapper
 - Specify a sequence of mappers
 - Output of one is input to the next
 - Arbitrary number can be "chained"
- ChainReducer
 - Specify the reducer
 - Specify a sequence of mappers
 - Arbitrary number of mappers can be "chained"