CS 378 — Big Data Programming

Lecture 20
MetaPatterns

Review

* Assignment 9 —Job Chaining
— Filter and bin sessions (same as assignment 8)
— 3 jobs that process submitter, sharer, clicker bins

* Can use the same map class

* Compute stats for click types — over all sessions, not
just sessions containing the click

— Fourth job — aggregate click stats

e Across the 3 session types
» Across all click types (extra credit)

MetaPatterns

 We've discussed: Job chaining
— Multiple jobs solving a multi-stage problem
— When processing cannot be done in one job
— When one output is input to multiple jobs

* Implemented in the run () method

Job Chaining

e Data pipelines often produce temporary files

* QOutput from one job that is input to another
— As part of the pipeline, these files should be cleaned up
— But you may want to keep them until the pipeline completes
— Once complete, temp files can be deleted

Job Chaining - Scripting

* Another approach to managing job flow
— Scripting languages
— Shell scripts, python, ...

* Benefits
— Changing the job flow does not require compilation
— Script can use services and systems that are not Java
— Easy to build flows between existing jobs

Chain Folding

* Basic patterns that can be “folded”:

— Each record is submitted to multiple mappers
 Combine these multiple map phases

— Or to a reducer, then to a mapper
* Push the map logic “upstream”

* Major benefit — reduce the amount of data moving
through a data pipeline

— Reduce disk I/O
— Reduce data transfer (shuffle) over the network

Chain Folding

Patterns that can benefit from folding

In the data pipeline

— Adjacent map phases might be merged
Example:

— Map only job, like a replicated join

— Followed by map and reduce job

Avoid writing the output of job one by joining the
map logic of job one and two

Chain Folding

* Patterns that can benefit from folding
* A data pipeline ends with a map-only job

* Avoid reading the output of the penultimate job by
merging the map logic of the final job into the
previous reduce step

Chain Folding

* Split map phases between operations that
— Decrease the amount of data (filtering)
— Increase the amount of data (enrichment)

* Push the minimizing operation into previous reducer
— This can reduce the amount of data transferred

e Generally, try to filter (minimize) data early

Chain Folding

D

Map: Filter out
Comments Teenager ~ f—| Teenager
comments Comments
_B distributed
Users cache
Map: Tokenize
Reduce: Teenager
femove stop Wordcount [Word
words
Count
AN Map: Filter out
Teenager
Comments jeep| cOmMMents, Reduce: | Te\‘z‘oige'
tokenize, Word count Count
remove stop
words

Users

Chain Folding

D

> Map: Extract Reduce: User
Comments username Count by user comment
counts
‘ Ma%:] Enrich N User
. “f" uigr information
Information with counts
Users
Reduce:
Map: Extract | Countbyuser, _ User
Comments uszrname enrich information
with user with counts
information

Users

Chain Folding

D

Posts

Map: Extract
user, topic tags

Reduce:
Count user+topic

-

AN

Counts the
number of

times each
user has
posted to
each tag

Users

Map: Enrich B
user | Counts the
information number of
times each
user with
age has
posted to
each tag
Map: filter counts Reduce: B
<5,pulloutage | ¢ ot | Counts of how
group & tag many times
each age
group has
posted to

each tag

Chain Folding

Counts the

> . Reduce: number of

posts u?e?pt.obi(zr:aas Count user-+topic, times each
+(OPICEAgS 1 Giter counts <5 :ossetrezati)

each tag

Map: Enrich
user —»| Counts of how
information, pull Sl'};"(gﬁf“ts many times
out age group each age
D\ &tag group has
Users i posted to
each tag

Classes for Chaining

* ChainMapper
— Specify a sequence of mappers
— QOutput of one is input to the next
— Arbitrary number can be “chained”
* ChainReducer
— Specify the reducer
— Specify a sequence of mappers
— Arbitrary number of mappers can be “chained”

