CS 378 — Big Data Programming

Lecture 26
Caching, Partitions



Persistence

e Recall that RDDs are recomputed as needed
— An action initiates evaluation
— Additional action results in another evaluation

 An RDD can be persisted for efficiency
 Making an RDD persistent:

— cache ()

—persist (Storagelevel level)



Persistence Options

From: http://training.databricks.com/workshop/itas_workshop.pdf

transformation § description

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, some partitions
will not be cached and will be recomputed on the fly
each time they're needed.This is the default level.

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, store the partitions
that don't fit on disk, and read them from there when
they're needed.

Store RDD as serialized Java objects (one byte array
per partition).This is generally more space-efficient
than deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

Similar to MEMORY_ONLY_SER, but spill partitions

MEMORY AND DISK SER that don't fit in memory to disk instead of recomputing
- - o them on the fly each time they're needed.

MEMORY_ ONLY

DISK ONLY Store the RDD partitions only on disk.
MEMORY ONLY 2, Same as the levels above, but replicate each partition
MEMORY AND DISK 2., etc on two cluster nodes.

— — ——

Big Data Programming



Partitioning

* Prudent partitioning can greatly reduce the
amount of communication (shuffle)

e |f an RDD is scanned only once, no need

* |f an RDD is reused multiple times in key-
oriented operations
— Partitioning can improve performance significantly



Partitioning
e Partitioning on pair RDDs (key, value)

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge in the last hour of events

 We'll merge sessions and events by userlID



Partitioning

Figure 4-4, from Learning Spark

userData joined events

=

2

<
X
IR

AN
77 ~\

>
network communication

Big Data Programming



userData

Partitioning
Figure 4-5, from Learning Spark

joined events

/

network communication

local reference

Big Data Programming



Partitioning

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge events, multiple times

* To set up for this:
— Create the session RDD (reading from HDFS)
— Partition (call partitionBy (), a transformation)
— Persist



Partitioning

* Once an RDD is created with partitionBy () Or
other transformation that implicitly partitions,

* You should persist the RDD, otherwise the
partitioning will be repeated on the next
action



Partitioning

Some transformations automatically return an
RDD with known partitioning

sortByKey () —range partitioned
groupByKey () —hash partitioned

Some transformations “forget” parent
partitioning
—map ()



Benefits of Partitioning

 Many transformations shuffle data across the
network

* All these will benefit from partitioning
— cogroup ()
— groupWith ()
— join ()
— leftOuterJoin ()
— rightOuterJoin ()



Benefits of Partitioning

* And these will benefit from partitioning
—groupByKey ()
— reduceByKevy ()
— combilneByKey ()
— lookup ()



Benefits of Partitioning

* Transformations on a single, partitioned RDD
— Computed locally on a machine
— Reduced result is sent to the master machine

* Binary transformations like cogroup (), join ()

— Prepartitioning will cause one RDD not to be
shuffled

— If both RDDs have the same partitioner and are on
the same machine (e.g., from mapvalues ())

— No shuffling will occur



Partitioning
Which partitioner is set on output?

Depends on the parent RDDs’ partitioners
By default, hash partitioner

— Number of partitions is the level of parallelism

If one parent has an explicit partitioner

— Use it

If both have an explicit partitioner, use the first



Partitioning

To maximize the potential for partitioning-
related optimizations, instead of map() use

mapValues ()
flatMapValues ()

Why? They preserve the key



Custom Partitioners

e Partitioners used by default:
— HashPartitioner
— RangePartitioner

* Custom partitioner
— Subclass Partitioner

— Implement the required methods
* numPartitions ()
* getPartition (key)
* equals ()



