CS 378 — Big Data Programming

Lecture 26
Closures, Caching, Partitions



Review

* Assignment 11: Inverted index in Spark

* Implementation

* Extra credit
— Approach 1

— Approach 2



Closures

* Functions as first class objects
— Can be passed to a function as an argument
— Can be returned from a function

— Can be assigned to variables

* Free variables that are bound in the lexical
environment/scope



Closures

* |n Scala, functions as a type are built-in

* |nJava, closures are anonymous inner classes
— Define an object that implements an interface

— Interface requires implementation of an abstract
method

— In Spark API, that method is call ()



Closures

* QOur Java functions are:
— Instantiated
— Sent off to the worker tasks (via serialization)
— Each task gets its own copy (no communication)

* Non-local references will cause containing
object to be serialized as well.

— Variable value types must be serializable



Persistence

e Recall that RDDs are recomputed as needed
— An action initiates evaluation
— Additional action results in another evaluation

 An RDD can be persisted for efficiency
 Making an RDD persistent:

— cache ()

—persist (Storagelevel level)



Persistence Options

From: http://training.databricks.com/workshop/itas_workshop.pdf

transformation § description

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, some partitions
will not be cached and will be recomputed on the fly
each time they're needed.This is the default level.

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, store the partitions
that don't fit on disk, and read them from there when
they're needed.

Store RDD as serialized Java objects (one byte array
per partition).This is generally more space-efficient
than deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

Similar to MEMORY_ONLY_SER, but spill partitions

MEMORY AND DISK SER that don't fit in memory to disk instead of recomputing
- - o them on the fly each time they're needed.

MEMORY_ ONLY

DISK ONLY Store the RDD partitions only on disk.
MEMORY ONLY 2, Same as the levels above, but replicate each partition
MEMORY AND DISK 2., etc on two cluster nodes.

— — ——

Big Data Programming



Partitioning

* Prudent partitioning can greatly reduce the
amount of communication (shuffle)

e |f an RDD is scanned only once, no need

* |f an RDD is reused multiple times in key-
oriented operations
— Partitioning can improve performance significantly



Partitioning
e Partitioning on pair RDDs (key, value)

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge in the last hour of events

 We'll be joining sessions and events by userlID



Partitioning

Figure 4-4, from Learning Spark

userData joined

events

P
%S

"0‘«

=N

\ N\

AN

i

>
network communication

Big Data Programming

10



userData

Partitioning
Figure 4-5, from Learning Spark

joined events

/

network communication

local reference

Big Data Programming

11



Partitioning

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge events, multiple times

* To set up for this:
— Create the session RDD (reading from HDFS)
— Partition (call partitionBy (), a transformation)
— Persist



Partitioning

Some transformations automatically return an
RDD with known partitioning

sortByKey () —range partitioned
groupByKey () —hash partitioned

Some transformations “forget” parent
partitioning
—map ()



