CS 378 — Big Data Programming

Lecture 27/
Page Rank (summary),
Aggregation and Broadcast Variables



Review

* Assignment 12
— Create user sessions
— Order events by timestamp
— Order sessions by user ID
— Partition sessions by referring domain
— Filter out large sessions (> 1000 events)

e Questions?



Basic Page Rank Algorithm

From Learning Spark, pp. 66-67

* Give each page an initial rank of 1

* On each iteration, have page p send a contribution of
rank (p) /numNeighbors (p) to its neighbors

e Set each page’s rank to

0.15 + 0.85 * contributionsReceived



Page Rank - Example
- i ’/‘ F
3 g2

D

pdgEHdl'I"l Gl .GZ

Image from: en.wikipedia.org/wiki/File:PageRank-hi-res.png

Big Data Programming



Page Rank - Results

Big Data Programming

m'nr!ulnc!:!




Accumulators

In our session generator app,

Suppose we wanted to count the number of
sessions that are filtered due to size (> 1000)

How would we do this?

How did we do this using Hadoop map-reduce?



Accumulators

 An accumulator provides a means for

aggregating values from worker nodes back to
the driver node.

* Create an accumulator from the context

* Increment the accumulator in functions
passed to worker nodes



Accumulators

* For failures or re-evaluation, what happens?

e Actions:

— Each task’s update applied only once

* Transformations:
— No guarantee that task updates applied only once
— Re-evaluation will update accumulator each time



Broadcast Variables

* |f you want to access a read-only data structure
from multiple transformations

— It will be wrapped into each closure

— Wasteful if the data is large

e A broadcast variable addresses this issue
— Sent to each worker node only once
— Accessible from closures sent to the workers

— Data must be serializable



Broadcast Variables

 Example use of broadcast variable
* |n user sessions, we have:

— VIN — vehicle identification number
— Make, model, trim, ...

* AVIN prefix (characters 1-8, 10) specifies some
of this info (make, model, trim, ...)

* Pass a table that maps VIN prefix to this info
 We can then verify that the info is correct



Working Per-Partition

* There are sometimes operations that we want
to do once in each partition of an RDD,

* Versus once for each element in the RDD
— Open a database connection
— Create a complex object like a parser (XML, JSON)

e Spark has a means to do this
— mapPartitions ()
— mapPartitionsToPair ()
— foreachPartition ()



Working Per-Partition

* The maprartitions() method takes a
— FlatMapFunction
— The call () method takes an iterator
— The call () method is invoked once per partition

* Inthecall () method
— Do work that should be done once (open database)
— |terate through the elements of the RDD partition
— Cleanup (close database connection)
— Returns an iterable over the results



Other Topics

for Further Reading

Discussed in the textbook

Other file systems
— HDFS, S3, ...

Database — Spark SQL
Streams — Spark Streaming

Machine learning - MLLib



