CS 378 — Big Data Programming

Lecture /
File Formats



Review

* Assignment 3 — Invertedindex

 Questions/issues?



File Formats

* Inassighnments 1 and 2, we used
— TextInputFormat
— TextOutputFormat
* Key value pairs:
— Input: LongWritable/Text
— Output: Text/DoubleArrayWritable

 The input file is just lines of text
— How does the LongWritable get generated?



File Formats

* Input formats provide an instance that extends
Hadoop class RecordReader

* RecordReader methods
— initialize (InputSplit, TaskAttemptContext)
— nextKeyValue ()
— getCurrentKey ()
— getCurrentValue ()
— getProgress ()
— close ()



File Formats

What does TextInputFormat do?
— Via its RecordReader implementer

|dentifies the next line of input
— Text through the next newline

Creates the Text object with this content
Calculates the position of this line in the input split
Creates the LongWritable with this number
Reports progress via getProgress ()



File Formats

Key value pairs:

— Output: Text/DoubleArrayWritable
The output file is just lines of text

— How does this text get generated?

Similar to input formats, output is controlled by
instances that extend RecordWriter

RecordWriter methods

— write (key, value)

— close()



File Formats

What does TextOutputFormat do?
— Via its RecordWriter implementer

Calls toString () on the key, writes this string
Writes a tab character

Calls toString () on the value, writes this string

How do we control the format of our results for
WordStatistics?



File Formats

* Suppose we wanted to use the output of WordCount
as input to another map-reduce job
— Maybe we collected word counts for each day’s emails
— Now we want to sum up multiple days

* One approach: Use TextInputFormat
— Map input is LongWritable, Text

— We'd have to parse the value in the Text object to
separate the key and value (separated by a tab)



File Formats

Another approach: implement a custom file format

What do we need to do?

In our custom file format class ...

— Define a RecordReader interface implementer to:
— Grab one line of input from the input split

— Find the key/value separator

— Return the key and the value as Text objects

Seems like a convenient class to have around



File Formats

 Hadoop provides exactly this class for us:

* KeyValueTextInputFormat
— You can set the separator character (by default, tab)

e Other file formats and readers provided by Hadoop
— Reading from a database
— Each mapper receives exactly N lines
— XML stream processing
— Sequence files (binary)



File Formats

Figure 7-2, Hadoop: The Definitive Guide 3" Edition

CombinefFile
InputFormat<K, V>

TextInputFormat

org.Lr;)gEIEermifnmlrz!u« FilelnputFormat<K, V> e & KeyValueTextinputFormat

NLinelnputFormat

SequenceFileAsBinary

SequenceFile
InputFormat

InputFormat<K, V> S

SequenceFileAsText
InputFormat

«interface»
Composable <
InputFormat<K, V>

CompositelnputFormat SequencefFile
<K,V> Inputkilter<K, V>

DBInputFormat<T>




File Formats

Figure 7-3, Hadoop: The Definitive Guide 3" Edition

split split split :
el 1] 23] 4 5] 6 |7 8] 9 | 10 ]m
block block block block
boundary boundary boundary boundary




File Formats

Figure 7-4, Hadoop: The Definitive Guide 3" Edition

TextOutputFormat<K, V>

M SequenceFileAsBinary
OutputFormat
Sequencefile

Outputtormat<K, V>

OutputFormat<K, V> ‘ FileOutputFormat
org.apache.hadoop.mapreduce AR

NullOutputFormat
<K, V>

DBOutputFormat<K,V>

FilterOutputFormat
<KV>

<o LazyOutputFormat<K, V>




