CS 378 — Big Data Programming

Lecture 14
Join Patterns

CS 378 - Fall 2016 Big Data Programming

Review

Assignment 6 — Reduce-side join
— User session and impression data

Questions/issues?
Review: info in syslog

AvroMultiplelInputs

Join Patterns

* Review: Suppose we want to join many sources, only
one of which is large

— User sessions (large)
— Map from cities to DMA (demographic marketing area)

* This is called a replicated join
— All the small files will be replicated to all machines

Replicated Join

 Can be done completely in mappers
— No need for sort, shuffle, or reduce
— Files are replicated with DistributedCache

* Restrictions:
— All but one of the inputs must fit in memory
— Can only accomplish an inner join, or
— A left outer join where the large data source is “left” part

Replicated Join - Data

Figure 5-2 from MapReduce Design Patterns

........

CS 378 - Fall 2016 Big Data Programming

L4
: Data Set A :
: I : Rep Joi > o
[nput | pJoin Output
E Split ! _’. Mapper Part
] J
] I
P N
0| doput | > Rep Join L’ Output
bl osplit [T Mapper Part
: T
] I
D &
s | Mnput > Rep Join L’ Output
b| Split -". Mapper Part
i |
] I
o ™

nput | > Rep Join L’ Output
: Split [y Mapper t’:a;')lu
R

b Dn’s{!g‘(bhue!ed

Data

SetB

Flow

Join Patterns

OK, so replicated join was interesting, but more than
one of my data sources is large.

Is there a way to do a map-side join in this case?
Or is reduce-side join my only option?

If we organize the input data in a specific way,
We can do this on the map-side.

Composite Join

Hadoop class CompositeInputFormat

Restricted to inner, or full outer join

Input data sets must have the same # of partitions
— Each input partition must be sorted by key
— All records for a particular key must be in the same partition

Seems pretty restrictive ...

Composite Join

These conditions might exist for data from other
mapReduce jobs where:

The jobs had the same # of reducers

— Recall that input data sets must be partitioned in same way
The jobs had the same foreign key
Output files aren’t splittable

Composite Join

If all those conditions are true, this join works
— Map-side only, so it’s efficient if we can use it.

If you find that you are preparing and formatting the
data only to be able to use composite join

It’s probably not worth it.
Just use a reduce-side join.

Composite Join — Data

'----------‘
Data SetB
foreign keys
Adam
Xavier
Xavier
Xavier
Bradley
Donald
Donald
hristopher
Frank
Fred
Nicholas

'----------‘
Data Set A
foreign keys
Adam
Adam
James
Xavier
Bradley
Stella
William
Andrew
Donald
Peter
Wade
Christopher
Dennis
Dennis
Frank
Fred
Nicholas

0
2
3

hash(fk) %5
hash(fk) %5=1
hash(fk) % 5
hash(fk) % 5
hash(fk) %5 =4

10

Big Data Programming

CS 378 - Fall 2016

Composite Join — Data Flow

| Composite E\\

1 Input Split 1 b-=h

| :

: Input 1

! Split b

: al \ Mapper Output
S N /': Part
| Input I

: Split :

| B1 '

S H

| Composite :\\

1 Input Split 2 L-=h

| :

: Input 1

! Split ,

| N \ Mapper jefp| Output
[N /: Part
\ Input 1

: Split :

| B2 |

fecccccanas H

5
-
<
g
N
-
)
1
"
'
'
'

I

|

|

|

I

: Input
: Split
) An
|

|

|

I

I

|

|

I

Part

Mapper °""’H

Input

CS 378 - Fall 2016 Big Data Programming

Composite Join Input

* |n the driver code (run () method)
— Get the file names from the command line
— Specify the input format, join type, and files

conf.setInputFormat (CompositelnputFormat.class);

conf.set (“Ymapred.join.expr”,
CompositeInputFormat.compose (“inner”,
KeyValueTextInputFormat.class, filel, file2));

Compositeloinlnput

* How might this implement inner join?
— Quter join?

* Could we do any other join type?
— Left outer? Anti-join?

* Qutput: TupleWritable

One More Join Pattern

* Suppose we wanted to compare all cars currently
available (for sale) to all other cars

— To identify “similar” cars
— Usage: “I like this car, show me others like it”

* Thisjoinis called “Cartesian Product”

— Compare N items to M items requires NxM comparisons
— Not straightforward to do with map-reduce

Cartesian Product

Pairs every record with every other record
— No keys needed
— N x M results, for datasets of size N, M

Map-only job
But still expensive to compute
Hadoop class: CartesianInputFormat

Cartesian Product

 To accomplish this join, we’ll need to pair every record
with every other record

* We can start with the approach for composite join

* For composite join, each mapper read two files
— They had the same key set

— The data was sorted by key
— We don’t care about the keys, just the ‘two file input’

Composite Join — Data Flow

| Composite E\\

1 Input Split 1 b-=h

| :

: Input 1

! Split b

: al \ Mapper Output
S N /': Part
| Input I

: Split :

| B1 '

S H

| Composite :\\

1 Input Split 2 L-=h

| :

: Input 1

! Split ,

| N \ Mapper jefp| Output
[N /: Part
\ Input 1

: Split :

| B2 |

fecccccanas H

5
-
<
g
N
-
)
1
"
'
'
'

I

|

|

|

I

: Input
: Split
) An
|

|

|

I

I

|

|

I

Part

Mapper °""’H

Input

CS 378 - Fall 2016 Big Data Programming

One Mapper, Two Inputs

* For composite join, the key order allowed us to:
— Read each of the two files only once
— Worked very much like merge sort

* For Cartesian product
— For each record in data set 1
— WEeé'll read every record in data set 2
— This pair of records is passed to the mapper

« We'd accomplish this with a custom input format
— RecordReader resets data set 2 for each input of data set 1

Cartesian Product — Data Flow

.

Output
File

e

Output
File

.

Output
File

.

Output
File

.

Output
File

Data Set A Data Set B

2 Splits 3 Splits
/\ _

S A sis1 [22 | Mae
/\ _

gt || s P BE | b
/\ _

St A oy [22 | Mae
/\ _

ot || s 13 BE | b
/\ _

gt | | sty 13 BE |
/\ _

gina | | | | soksa [B2 | Voo

.

Output
File

CS 378 - Fall 2016 Big Data Programming

19

