CS 378 — Big Data Programming

Lecture 25
Caching, Partitions



Review

* Assignment 11
— Create user sessions
— Order events by timestamp, event type, subtype
— Order sessions by user ID

— Partition sessions by referring domain
— Sample SHOWER sessions (1 in 10)



Partitioning Review

e Partitioning on pair RDDs (key, value)

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge in the last hour of events

 We'll merge sessions and events by userlID



CS 378 - Fall 2016

Partitioning Review

Figure 4-4, from Learning Spark

userData joined events

=

2

<
X
IR

=N

\ N\

AN

>
network communication

Big Data Programming



Partitioning Review

Figure 4-5, from Learning Spark

userData joined events

'S
/3

5
(L

>
network communication

local reference

CS 378 - Fall 2016 Big Data Programming



Partitioning

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge events, multiple times

* To set up for this:
— Create the session RDD (reading from HDFS)
— Partition (call partitionBy (), a transformation)
— Persist



Partitioning

* Once an RDD is created with partitionBy () Or
another transformation that implicitly
partitions,

* You should persist the RDD, otherwise the
partitioning will be repeated on the next
action



Benefits of Partitioning

 Many transformations shuffle data across the
network

* All these will benefit from partitioning
— cogroup ()
— groupWith ()
— join ()
— leftOuterJoin ()
— rightOuterJoin ()



Benefits of Partitioning

* And these will benefit from partitioning
—groupByKey ()
— reduceByKevy ()
— combilneByKey ()
— lookup ()



Benefits of Partitioning

* Transformations on a single, partitioned RDD
— Computed locally on a machine
— Reduced result is sent to the master machine

* Binary transformations like cogroup (), join ()

— Prepartitioning will cause one RDD not to be
shuffled

— If both RDDs have the same partitioner and are on
the same machine (e.g., from mapvalues ())

— No shuffling will occur



Partitioning

Some transformations automatically return an
RDD with known partitioning

sortByKey () —range partitioned
groupByKey () —hash partitioned

Some transformations “forget” parent
partitioning
—map ()



Partitioning
Which partitioner is set on output?

Depends on the parent RDDs’ partitioners
By default, hash partitioner

— Number of partitions is the level of parallelism

If one parent has an explicit partitioner

— Use it

If both have an explicit partitioner, use the first



Partitioning

To maximize the potential for partitioning-
related optimizations, instead of map() use

mapValues ()
flatMapValues ()

Why? They preserve the key



Custom Partitioners

e Partitioners used by default:
— HashPartitioner
— RangePartitioner

* Custom partitioner
— Subclass Partitioner

— Implement the required methods
* numPartitions ()
* getPartition (key)
* equals ()



