CS 378 — Big Data Programming

Lecture 8
Complex “Writable” Types
AVRO

CS 378 - Fall 2016 Big Data Programming



Review
* Assignment 3 - Invertedindex

 We'll look at implementation details of:
— Mapper
— Combiner
— Reducer

— Supporting classes

e Other questions/issues?



Hadoop Provided Writables

 We've discussed some Hadoop Writable classes
— Text
— LongWritable
— DoubleWritable

* Hadoop provides many other classes
— Wrappers for all Java primitive types
— Some for Hadoop usage (TaskTrackerStatus)
— Others for us to extend (MapWritable)



User Defined Writables

 Hadoop provided classes cover commonly
used types and data structures

 But we’re likely to need more application
specific data structures/types
— For example, WordStatistics

* We can define these one by one
— Must implement the Writable interface

— This will become tedious



Custom Writables

For our custom Writable

We had to implement Writable interface
— readFields ()

— write ()
We had to implement toString () for text output
We had to be able to parse in the text representation

AVRO will implement these things for us



AVRO Example

{“namespace”: “com.refactorlabs.cs378.assignéd”,
“type”: “record”,
“name”: “WordCountData”,
“fields”: |
{“name”: “word count”, “type”: “long”} ]

}

* How does this get transformed to Java code?
— Add the schema file to your project (filename.avsc)
— Run maven to force AVRO compile



AVRO Generated Code

e Accessors for the internal data

— Has methods
* hasWordCount ()

— Get methods
* getWordCount ()

* Builder class for constructing instances

— Above methods
— Plus set and clear methods



AVRO — Builder Classes

 Why construct instances using the Builder class?

* You AVRO schema contains constraints
— Value types: enforced by accessors
— Required vs. optional values (union): checked by build

* Incremental construction

— For arrays and maps, data can be added
incrementally



AVRO 1I/0

 Text output
— AVRO text representation is JSON

* Avro container files
— Binary representation that we can read as input

* The particular format is determined by

— The types of objects we output
— The file output format



Assignment 4

 pom.xml provided
— Added AVRO version, dependency
— Instructions to compile AVRO schema definitions

 Example use of AVRO: WordCountA.java
— Classpath management
— AvrolJob versus Job
— AvroValue<>

 All files on Canvas / Files / Assignment 4



Assignment 4

* Implement WordStatistics using an Avro schema
— Use the Avro schema in WordCountA as an example

* For each word calculate (like assignment 2):

— Mean, variance, min, max of the occurrences of the
word in those paragraphs where the word appears

— Also compute these stats for paragraph length
— All in one pass over the data



Assignment 4

* Implement an AVRO object for WordStatistics data
— CallitWwordStatisticsData

— Mapper output:
* Text, AvroValue<WordStatisticsData>

— Reducer output:
* Text, AvroValue<WordStatisticsData>

* See code in WordCountA
— Output file format: TextOutputFormat
— Set JAR to beginning of classpath
— Calls using avroJob to define the Avro schema



