
CS	378	–	Big	Data	Programming	

Lecture	8	
Complex	“Writable”	Types	

AVRO		

CS	378	-	Fall	2016	 Big	Data	Programming	 1	

Review	

•  Assignment	3	-	InvertedIndex	

•  We’ll	look	at	implementaQon	details	of:	
– Mapper	
–  Combiner	
–  Reducer	
–  SupporQng	classes	

•  Other	quesQons/issues?	

CS	378	-	Fall	2016	 Big	Data	Programming	 2	

Hadoop	Provided	Writables	

•  We’ve	discussed	some	Hadoop	Writable	classes	
– Text
– LongWritable
– DoubleWritable

•  Hadoop	provides	many	other	classes	
– Wrappers	for	all	Java	primiQve	types	
–  Some	for	Hadoop	usage	(TaskTrackerStatus)	
– Others	for	us	to	extend	(MapWritable)	

CS	378	-	Fall	2016	 Big	Data	Programming	 3	

User	Defined	Writables	

•  Hadoop	provided	classes	cover	commonly	
used	types	and	data	structures	

•  But	we’re	likely	to	need	more	applicaQon	
specific	data	structures/types	
– For	example,	WordStatistics

•  We	can	define	these	one	by	one	
– Must	implement	the	Writable	interface	
– This	will	become	tedious	

CS	378	-	Fall	2016	 Big	Data	Programming	 4	

Custom	Writables	

•  For	our	custom	Writable	

•  We	had	to	implement	Writable	interface	
–  readFields()
–  write()	

•  We	had	to	implement	toString()	for	text	output	
•  We	had	to	be	able	to	parse	in	the	text	representaQon	

•  AVRO	will	implement	these	things	for	us	

CS	378	-	Fall	2016	 Big	Data	Programming	 5	

AVRO	Example	

{“namespace”: “com.refactorlabs.cs378.assign4”,

 “type”: “record”,

 “name”: “WordCountData”,

 “fields”: [
 {“name”: “word_count”, “type”: “long”}]

}	

•  How	does	this	get	transformed	to	Java	code?
–  Add	the	schema	file	to	your	project	(filename.avsc)	
–  Run	maven	to	force	AVRO	compile	

CS	378	-	Fall	2016	 Big	Data	Programming	 6	

AVRO	Generated	Code	

•  Accessors	for	the	internal	data	
–  Has	methods	

•  hasWordCount()
•  …	

–  Get	methods	
•  getWordCount()
•  …

•  Builder	class	for	construcQng	instances	
–  Above	methods	
–  Plus	set	and	clear	methods	

CS	378	-	Fall	2016	 Big	Data	Programming	 7	

AVRO	–	Builder	Classes	

•  Why	construct	instances	using	the	Builder	class?	

•  You	AVRO	schema	contains	constraints	
–  Value	types:	enforced	by	accessors	
–  Required	vs.	opQonal	values	(union):	checked	by	build	

•  Incremental	construcQon	
– For	arrays	and	maps,	data	can	be	added	
incrementally	

CS	378	-	Fall	2016	 Big	Data	Programming	 8	

AVRO	I/O	

•  Text	output	
–  AVRO	text	representaQon	is	JSON		

•  Avro	container	files	
–  Binary	representaQon	that	we	can	read	as	input	

•  The	parQcular	format	is	determined	by	
–  The	types	of	objects	we	output	
–  The	file	output	format	

CS	378	-	Fall	2016	 Big	Data	Programming	 9	

Assignment	4	
•  pom.xml	provided	
– Added	AVRO	version,	dependency	
–  InstrucQons	to	compile	AVRO	schema	definiQons	

•  Example	use	of	AVRO:	WordCountA.java	
– Classpath	management	
– AvroJob	versus	Job	
– AvroValue<>	

•  All	files	on	Canvas	/	Files	/	Assignment	4	
CS	378	-	Fall	2016	 Big	Data	Programming	 10	

Assignment	4	

•  Implement	WordStaQsQcs	using	an	Avro	schema	
– Use	the	Avro	schema	in	WordCountA	as	an	example	

•  For	each	word	calculate	(like	assignment	2):	
– Mean,	variance,	min,	max	of	the	occurrences	of	the	
word	in	those	paragraphs	where	the	word	appears	

– Also	compute	these	stats	for	paragraph	length	
– All	in	one	pass	over	the	data	

CS	378	-	Fall	2016	 Big	Data	Programming	 11	

Assignment	4	
•  Implement	an	AVRO	object	for	WordStaQsQcs	data	
–  Call	it	WordStatisticsData
– Mapper	output:	

•  Text, AvroValue<WordStatisticsData>

–  Reducer	output:	
•  Text, AvroValue<WordStatisticsData>

•  See	code	in	WordCountA	
–  Output	file	format:	TextOutputFormat
–  Set	JAR	to	beginning	of	classpath	
–  Calls	using	AvroJob to	define	the	Avro	schema	

CS	378	-	Fall	2016	 Big	Data	Programming	 12	

