
CS	378	–	Big	Data	Programming	

Lecture	10	
Data	Organiza;on	Pa<erns	

CS	378	-	Fall	2017	 Big	Data	Programming	 1	



Review	

•  Assignment	4	–	Avro	Objects	

•  We’ll	look	at	implementa;on	details	of:	
– Mapper	
–  Combiner	

•  Should	we	use	one?		Can	we	use	one?	
–  Reducer	
–  Avro	generated	Java	code	

CS	378	-	Fall	2017	 Big	Data	Programming	 2	



AVRO	Field	Defini;ons	

•  Unions	
– With	defaults	

•  Enumera;ons	
–  In	unions	
– With	defaults	

CS	378	-	Fall	2017	 Big	Data	Programming	 3	



Design	Pa<ern	

•  Structured	to	hierarchical	design	pa<ern	

•  Data	sources	linked	by	some	foreign	key	
•  Data	is	structured	and	row	based	
–  For	example,	from	databases	

•  Data	is	semi-structured	and	event	based	
– Web	logs	

CS	378	-	Fall	2017	 Big	Data	Programming	 4	



Sessionizing	Web	Logs	

•  Create	user	sessions	from	web	logs	

•  Represents	all	the	ac;ons	by	a	user	
•  Allows	later	analysis	to	“replay”	the	user	ac;ons	

•  Collect	measures	and	metrics	about	user	behavior	
–  Pages	viewed,	;me	on	page,	clicks	
–  Path	through	the	site,	entry	to	the	site	(from	a	search	
engine?)	

CS	378	-	Fall	2017	 Big	Data	Programming	 5	



Sessionizing	Web	Logs	

•  To	start	(this	or	any	“big	data”	applica;on)	
•  We	need	to	understand	the	data	
– Fields,	values	
– Data	size	

•  We	need	to	define	our	goal	
– What	do	we	want	to	end	up	with	

CS	378	-	Fall	2017	 Big	Data	Programming	 6	



Web	Logs	

•  Let’s	look	at	some	data	
•  Logs	saved	in	database	
– Log	entries	already	have	structure	
– Tab	separated	values	
– Easily	parsed	(lots	of	work	has	been	done	for	us)	

CS	378	-	Fall	2017	 Big	Data	Programming	 7	



Web	Logs	

•  Our	goal	is	to	aggregate	user	ac;ons	into	
sessions,	so	we	can	be<er	understand	
– User	behavior	
– The	impact	changes	have	on	user	behavior	

•  So	what	should	a	session	look	like?	

CS	378	-	Fall	2017	 Big	Data	Programming	 8	



User	Session	

•  Data	about	the	session	as	a	whole	

•  List	of	events	(pages	viewed,	ac;ons	taken)	
– Ordered	in	;me	

•  In	our	logs,	what	data	is	session-wide	
•  What	data	is	impression/ac;on	specific	

CS	378	-	Fall	2017	 Big	Data	Programming	 9	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini;ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2017	 Big	Data	Programming	 10	



Assignment	5	
•  Define	an	Avro	object	for	a	user	session	
–  One	user	session	for	each	unique	userID	
–  Session	will	include	an	array	of	events	
–  Events	ordered	by	;mestamp	

•  Iden;fy	data	associated	with	the	session	as	a	whole	
•  Iden;fy	data	associated	with	individual	events	
•  Include	all	the	fields	in	the	log	entries	
•  Create	enums	for:	

–  body_style, cab_style, vehicle_condition 

CS	378	-	Fall	2017	 Big	Data	Programming	 11	



Assignment	5	
•  Run	WordCount	on	dataSet5a.tsv,dataSet5b.tsv –	
see	what’s	in	these	files	
– Modify	WordCount	to	output	values	for	each	field:	

•  fieldname:value 
–  Ignore	these	fields	(they	have	lots	of	values):	

•  event_;mestamp,	price,	mileage,	user_id,	vin	

•  event_type 
–  Break	this	into	two	fields	in	your	schema:		
–  event_type	(enum),	event_subtype	(enum)	

CS	378	-	Fall	2017	 Big	Data	Programming	 12	



Assignment	5	
Recommenda;ons	

•  Get	your	app	working	with	just	a	few	fields	populated	
–  Session	with	no	events,	or	just	a	count	of	events	
–  Add	events,	but	just	a	few	fields	first	
–  Extend	the	schema	
–  Populate	the	new	field(s)	in	your	schema	

•  Look	at	file	dataSet5Small.tsv	(on	Canvas)	to	
understand	the	data	

•  Write	some	unit	tests	as	you	go	

CS	378	-	Fall	2017	 Big	Data	Programming	 13	


