CS 378 — Big Data Programming

Lecture 13
Join Patterns

CS 378 - Fall 2017 Big Data Programming

Review

* Assignment 6 — Reduce-side join
— User session and impression data

 Questions/issues?

Join Patterns

e Suppose we only wanted sessions with submits
— In practice, a small % of sessions have submits

* In our current implementation, we can’t identify
these sessions until we “reduce” them

 How could we avoid transferring all the impressions
for no-submit sessions from mappers to reducers?
— Mappers would need to know which log entries to ignore

Reduce Side Join - Data Flow

Figure 5-1 from MapReduce Design Patterns

' DataSetA |

T

| Input |0 Join (bob, "md")

V| split -r> Mapper [>

I I

I I

I |> I

: Input : Join _’ Join _’ Output

L split —:-} e | > Reducer Part

I |

} |

T

! Input ! Join |

: Split -:-> Mapper .

I | Shuffle Join Output

Cmmmmme o H and Sort P peducer [P| Part

T

} I

I |

: Input ! Join (bob, 37) o outont
Split Mapper > > oin > utpu

: ' : i Reducer Part

I I

N

v | tnput | Join (bob, 33)

V| split -r> Mapper [

I |

I I

CS 378 - Fall 2017 Big Data Programming

Join Patterns

* Could we tell each mapper which userlds to accept?

* First we'll need to get that info to each mapper

— Somehow we’ll need to get some info to all mappers
— A list of userlds?

 We still have an issue if that list is too large to hold in
memory

DistributedCache

* The Hadoop class: DistributedCache

* Allows us to specify files that are distributed
to the local file system of each task (mapper
or reducer)

 What do we do about the file/data size?
— Could still be too large to hold in memory

DistributedCache

* |n the driver code (run () method)

— Get the file name from the command line
— Tell Hadoop about this file
— Name(s) conveyed in the configuration object

Path userIdsPath = new Path(args[1l]);

FileStatus[] files =
FileSystem.getConf () .listStatus (userIdsPath);

DistributedCache.addCacheFile (
files[0] .getPath() .toUri (), conf);

DistributedCache

* In the mapper code (setup () method)
— setup () method called once for each mapper
— Get the file name from the configuration
— Load info from the file(s)

URI[] files = DistributedCache.getCacheFiles (

context.getConfiguration());

Join Patterns

* Review: Suppose we want to join many sources, only
one of which is large

— User sessions (large)
— Map from cities to DMA (demographic marketing area)

* This is called a replicated join
— All the small files will be replicated to all machines

Replicated Join

 Can be done completely in mappers
— No need for sort, shuffle, or reduce
— Files are replicated with DistributedCache

* Restrictions:
— All but one of the inputs must fit in memory
— Can only accomplish an inner join, or
— A left outer join where the large data source is “left” part

Replicated Join - Data

Figure 5-2 from MapReduce Design Patterns

........

CS 378 - Fall 2016 Big Data Programming

L4
: Data Set A :
: I : Rep Joi > o
[nput | pJoin Output
E Split ! _’. Mapper Part
] J
] I
P N
0| doput | > Rep Join L’ Output
bl osplit [T Mapper Part
: T
] I
D &
s | Mnput > Rep Join L’ Output
b| Split -". Mapper Part
i |
] I
o ™

nput | > Rep Join L’ Output
: Split [y Mapper t’:a;')lu
R

b Dn’s{!g‘(bhue!ed

Data

SetB

Flow

11

Join Patterns

OK, so replicated join was interesting, but more than
one of my data sources is large.

Is there a way to do a map-side join in this case?
Or is reduce-side join my only option?

If we organize the input data in a specific way,
We can do this on the map-side.

Composite Join

Hadoop class CompositeInputFormat

Restricted to inner, or full outer join

Input data sets must have the same # of partitions
— Each input partition must be sorted by key
— All records for a particular key must be in the same partition

Seems pretty restrictive ...

Composite Join

These conditions might exist for data from other
mapReduce jobs where:

The jobs had the same # of reducers

— Recall that input data sets must be partitioned in same way
The jobs had the same foreign key
Output files aren’t splittable

Composite Join

If all those conditions are true, this join works
— Map-side only, so it’s efficient if we can use it.

If you find that you are preparing and formatting the
data only to be able to use composite join

It’s probably not worth it.
Just use a reduce-side join.

Composite Join — Data

'----------‘
Data SetB
foreign keys
Adam
Xavier
Xavier
Xavier
Bradley
Donald
Donald
hristopher
Frank
Fred
Nicholas

'----------‘
Data Set A
foreign keys
Adam
Adam
James
Xavier
Bradley
Stella
William
Andrew
Donald
Peter
Wade
Christopher
Dennis
Dennis
Frank
Fred
Nicholas

0
2
3

hash(fk) %5
hash(fk) %5=1
hash(fk) % 5
hash(fk) % 5
hash(fk) %5 =4

16

Big Data Programming

CS 378 - Fall 2016

Composite Join — Data Flow

| Composite E\\

1 Input Split 1 b-=h

| :

: Input 1

! Split b

: al \ Mapper Output
S N /': Part
| Input I

: Split :

| B1 '

S H

| Composite :\\

1 Input Split 2 L-=h

| :

: Input 1

! Split ,

| N \ Mapper jefp| Output
[N /: Part
\ Input 1

: Split :

| B2 |

fecccccanas H

5
-
<
g
N
-
)
1
"
'
'
'

I

|

|

|

I

: Input
: Split
) An
|

|

|

I

I

|

|

I

Part

Mapper °""’H

Input

CS 378 - Fall 2016 Big Data Programming

