CS 378 — Big Data Programming

Lecture 15
Filtering Patterns

CS 378 - Fall 2017 Big Data Programming



Review

* Assignment 7 — Filtering, Multiple Outputs

 Questions/issues:
— Determining the session category
— Using AvroMultipleOQOutputs
— Output to submit



Basic Filtering - Review

Some common basic filtering uses

grep

Random sample

Score records on some criterion, apply a threshold
Data cleansing



Distributed grep

e grep — Unix filtering utility

* Apply a regular expression to each input record
e Output records that match



Distributed grep

public static class GrepMapper
extends Mapper<Object, Text, NullWritable, Text> {

private String mapRegex = null;

public void setup(Context context) throws IOException,
InterruptedException {

mapRegex = context.getConfiguration().get("mapregex");

}

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

if (value.toString().matches(mapRegex)) {
context.write(NullWritable.get(), value);

}

CS 378 - Fall 2017 Big Data Programming



Simple Random Sampling

* Each input record has equal probability of selection

* Does the selection predicate need to examine the
record?
— If we want the equal probability condition, then no.
— |If we want a biased sample, we can consider the record

* Like basic filtering, consider output file size



Simple Random Sampling

private Random rands = new Random();
private Double percentage;

protected void setup(Context context) throws IOException,

}

InterruptedException {
// Retrieve the percentage that is passed in via the configuration
// like this: conf.set("filter_percentage"”, .5);
// for .5%
String strPercentage = context.getConfiguration()
.get("filter_percentage");
percentage = Double.parseDouble(strPercentage) / 100.0;

public void map(Object key, Text value, Context context)

CS 378 - Fall 2017

throws IOException, InterruptedException {

if (rands.nextDouble() < percentage) {
context.write(NullWritable.get(), value);
}

Big Data Programming



Bloom Filter

Bloom filter like the basic filter

But selection predicate is:
— Does record contain a value from a predefined set?

This set may be too large to fit in memory

Bloom filter addresses this problem

— Fixed size data structure



Bloom Filter

* Probabilistic data structure
— Used to test whether something is in a predefined set

— Can create “false positives”
* Knows for sure that something is not a member of the set
* Sometimes reports membership as true, when it is false

— Never creates “false negatives”
* Never reports “not a member” when it in fact it is a member

* Fixed size in memory
— Train the filter using members of the set



Bloom Filter Training

e Data structure
— Bit array

 Multiple hash functions

* Process all “keys’ that will be in the set to
populate the bloom filter data structure



Bloom Filter — Data Flow

Figure 3-2 from MapReduce Design Patterns

P —————————

' i
" l
] 1
! | Input Output AN H
i | Split File i
' 1
' i
: Discarded :
) 1
) 1
) 1
' l
i Input Bioo Bloom Output D
1 X Filter Filter P 1
: Split Test File :
' ]
: Discarded :
' 1
) 1
' 1
' 1
" |
i Input Output AN :
: Split File :
" :
- Discarded .
' |
' |
' |
' ]
-

CS 378 - Fall 2017 Big Data Programming



Bloom Filter

* Bloom filter commonly used as map-only
— Output files will have some false positives
— Code examples in the book (pp. 53 —57)

* We can combine Bloom filter with reduce-side join
— Bloom filter represented user IDs with submit events
— Applied in the mapper
— Reduced the data sent to reduce
— Reduce eliminated false positives (non-submit sessions)



Reduce Side Join with Bloom Filter

Train the filter

— Read all log entries, identify userlds with submits

Specify the trained data file in our driver app (run() method)

Modify the mapper to load the trained Bloom filter
— setup() method

Reducer — what does it need to do?



Bloom Filter

e Can add members to the set (further training)
— Can’t remove members

— There is a technique that allows removal

* Parameters of the filter
— Number of bits in a bit array
— Number of independent hash functions

 These can be tuned to get a certain false positive rate



Top Ten (or Top N)

We know that we want a specific number of outputs
— Based on some evaluation/ranking criterion

An obvious approach is to sort first

But total sort is expensive for large data
— In Hadoop, or in a database

Output should be significantly smaller than the input

How might we accomplish this without sort?



Top Ten (or Top N)

Start with a comparison method

— Given two records, which one is larger

Each mapper finds the top ten from its data

Each mapper sends it top ten to reduce
— When?
Reduce finds the final top ten

— How many reducers?

What key and value are sent to reduce?



Top Ten (or Top N)

class mapper:
setup():
initialize top ten sorted list

map(key, record):
insert record into top ten sorted list
if length of array is greater-than 10 then
truncate list to a length of 10

cleanup():
for record in top sorted ten list:
emit null,record

CS 378 - Fall 2017 Big Data Programming

17



Top Ten (or Top N)

class reducer:
setup():
initialize top ten sorted list

reduce(key, records):
sort records

truncate records to top 10
for record in records:
emit record

CS 378 - Fall 2017 Big Data Programming

18



Top Ten (or Top N)

CS 378 - Fall 2017

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

)

Input
Split

!

Input
Split

)

Input
Split

TopTen
Reducer

!

Top Ten local top 10
Mapper
Top Ten local top 10
Mapper
TopTen | localtop 10
Mapper
TopTen | localtop 10
Mapper
TopTen local top 10
Mapper
TopTen | localtop 10
Mapper

Big Data Programming

final top 10
————»

Top 10
Output

19



Top Ten (or Top N)

* Remember to copy records retained in map ()
— Why?

e Recall the key/value output by the mappers
— Suppose we wanted the original key/value pair. How?

* Each mapper’s Top N is output in cleanup ()

— How could we do Top N without using cleanup () ?



Top Ten (or Top N)

For top N, if N large, this pattern becomes inefficient

Single reducer
Data transferred to reduce

Reduce input is sorted (expensive for large
data)

No parallel writes from reduce



Distinct
* Want only one record when duplicate records exist

* Map:
— Extract the data of interest (if not the entire record)
— Output this data as the key
— Make the value output by map () NullWritable

* Reduce:
— Simply write out each unique key (the data of interest)
— Can use a large number of reducers



Distinct
Can we use a combiner?

If duplicates are rare, combiner doesn’t help much

If duplicates are common, or co-located, a combiner
can greatly reduce the data transferred

Suppose we want all the data in the record, and
— The compare method is complex
— Can we approach this problem differently?



