
CS	378	–	Big	Data	Programming	

Lecture	15	
Filtering	Pa;erns	
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Review	

•  Assignment	7	–	Filtering,	MulFple	Outputs	
	
•  QuesFons/issues:	
–  Determining	the	session	category	
–  Using	AvroMultipleOutputs 
–  Output	to	submit	
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Basic	Filtering	-	Review	

•  Some	common	basic	filtering	uses	

•  grep	
•  Random	sample	
•  Score	records	on	some	criterion,	apply	a	threshold	
•  Data	cleansing	

CS	378	-	Fall	2017	 Big	Data	Programming	 3	



Distributed	grep	

•  grep	–	Unix	filtering	uFlity	

•  Apply	a	regular	expression	to	each	input	record	
•  Output	records	that	match	
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Distributed	grep	
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Simple	Random	Sampling	

•  Each	input	record	has	equal	probability	of	selecFon	

•  Does	the	selecFon	predicate	need	to	examine	the	
record?	
–  If	we	want	the	equal	probability	condiFon,	then	no.	
–  If	we	want	a	biased	sample,	we	can	consider	the	record	

•  Like	basic	filtering,	consider	output	file	size	
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Simple	Random	Sampling	
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Bloom	Filter	

•  Bloom	filter	like	the	basic	filter	
•  But	selecFon	predicate	is:	
– Does	record	contain	a	value	from	a	predefined	set?	

•  This	set	may	be	too	large	to	fit	in	memory	

•  Bloom	filter	addresses	this	problem	
– Fixed	size	data	structure	
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Bloom	Filter	

•  ProbabilisFc	data	structure	
–  Used	to	test	whether	something	is	in	a	predefined	set	
–  Can	create	“false	posiFves”	

•  Knows	for	sure	that	something	is	not	a	member	of	the	set	
•  SomeFmes	reports	membership	as	true,	when	it	is	false	

–  Never	creates	“false	negaFves”	
•  Never	reports	“not	a	member”	when	it	in	fact	it	is	a	member	

•  Fixed	size	in	memory	
–  Train	the	filter	using	members	of	the	set	
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Bloom	Filter	Training	

•  Data	structure	
– Bit	array	

•  MulFple	hash	funcFons	

•  Process	all	“keys’	that	will	be	in	the	set	to	
populate	the	bloom	filter	data	structure	
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Bloom	Filter	–	Data	Flow	
Figure	3-2	from	MapReduce	Design	Pa;erns	
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Bloom	Filter	

•  Bloom	filter	commonly	used	as	map-only	
–  Output	files	will	have	some	false	posiFves	
–  Code	examples	in	the	book	(pp.	53	–	57)	

•  We	can	combine	Bloom	filter	with	reduce-side	join	
–  Bloom	filter	represented	user	IDs	with	submit	events	
–  Applied	in	the	mapper	
–  Reduced	the	data	sent	to	reduce	
–  Reduce	eliminated	false	posiFves	(non-submit	sessions)	
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Reduce	Side	Join	with	Bloom	Filter	

•  Train	the	filter	
–  Read	all	log	entries,	idenFfy	userIds	with	submits	

•  Specify	the	trained	data	file	in	our	driver	app	(run()	method)	

•  Modify	the	mapper	to	load	the	trained	Bloom	filter		
–  setup()	method	

•  Reducer	–	what	does	it	need	to	do?	
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Bloom	Filter	

•  Can	add	members	to	the	set	(further	training)	
–  Can’t	remove	members	
–  There	is	a	technique	that	allows	removal	

•  Parameters	of	the	filter	
–  Number	of	bits	in	a	bit	array	
–  Number	of	independent	hash	funcFons	

•  These	can	be	tuned	to	get	a	certain	false	posiFve	rate	
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Top	Ten	(or	Top	N)	

•  We	know	that	we	want	a	specific	number	of	outputs	
–  Based	on	some	evaluaFon/ranking	criterion	

•  An	obvious	approach	is	to	sort	first	
•  But	total	sort	is	expensive	for	large	data	
–  In	Hadoop,	or	in	a	database	

•  Output	should	be	significantly	smaller	than	the	input	

•  How	might	we	accomplish	this	without	sort?	
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Top	Ten	(or	Top	N)	

•  Start	with	a	comparison	method	
–  Given	two	records,	which	one	is	larger	

•  Each	mapper	finds	the	top	ten	from	its	data	
•  Each	mapper	sends	it	top	ten	to	reduce	
– When?	

•  Reduce	finds	the	final	top	ten	
–  How	many	reducers?	

•  What	key	and	value	are	sent	to	reduce?	
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Top	Ten	(or	Top	N)	
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Top	Ten	(or	Top	N)	
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Top	Ten	(or	Top	N)	
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Top	Ten	(or	Top	N)	

•  Remember	to	copy	records	retained	in	map() 
– Why?	

•  Recall	the	key/value	output	by	the	mappers	
–  Suppose	we	wanted	the	original	key/value	pair.		How?	

•  Each	mapper’s	Top	N	is	output	in	cleanup() 
–  How	could	we	do	Top	N	without	using	cleanup()?	
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Top	Ten	(or	Top	N)	

•  For	top	N,	if	N	large,	this	pa;ern	becomes	inefficient	

•  Single	reducer	
•  Data	transferred	to	reduce	
•  Reduce	input	is	sorted	(expensive	for	large	
data)	

•  No	parallel	writes	from	reduce	
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DisFnct	

•  Want	only	one	record	when	duplicate	records	exist	

•  Map:	
–  Extract	the	data	of	interest	(if	not	the	enFre	record)	
–  Output	this	data	as	the	key	
– Make	the	value	output	by	map()	NullWritable	

•  Reduce:	
–  Simply	write	out	each	unique	key	(the	data	of	interest)	
–  Can	use	a	large	number	of	reducers	
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DisFnct	

•  Can	we	use	a	combiner?	

•  If	duplicates	are	rare,	combiner	doesn’t	help	much	
•  If	duplicates	are	common,	or	co-located,	a	combiner	
can	greatly	reduce	the	data	transferred	

•  Suppose	we	want	all	the	data	in	the	record,	and	
–  The	compare	method	is	complex	
–  Can	we	approach	this	problem	differently?	
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