CS 378 — Big Data Programming

Lecture 1/7A
MetaPatterns
Job Merging

CS 378 - Fall 2017 Big Data Programming



Job Merging

Two jobs that read the same data
But otherwise are unrelated

If loading and parsing the data is expensive
Let’s do this only once



CS 378 - Fall 2017

Job Merging

Posts

Posts

Posts

g

|_,

Map: Reduce:
Extract user Count
Map:
. Reduce:
Extract topic tag,
A Average words
Map: Reduce:
Extract user Count
Map: Reduce:
Extract topic tag,| Average words
word count

>

Big Data Programming

Counts the

number of

times each
user has
posted

DN

Average
number of
words per

tag

Counts the

number of

times each
user has
posted

Average
number of
words per

tag




Job Merging

* |n effect we make the mappers read same data
— Already the case

e And we make the reducers read same data

— Presumably the two mappers output different data
— How?

* Note: We're not limited to merging two jobs



Job Merging

What will it take?

Both jobs must have the same map output key/value
— |Is there a way to avoid this?
— How about a union type for key, or value, or both?

Best applied to existing, frequently run jobs
Requires the code to be merged



Job Merging

e Basicidea

* Merge the mapper code:
— Does the work of both “original” mappers
— Adds data to any output indicating the origin

e Reducer code:

— |dentify input type based on extra data in the key
— Separate the output with MultipleOutputs



Job Merging

* New mapper does work of both mappers
— For each input record

|H

— Do the work of first “original” mapper
— Do the work of second “original” mapper

— Might need to write multiple times
* Why?

* Add data to the key to distinguish the two



Job Merging

This pattern can be simplified by

implementing a custom class for the new
intermediate key

Combines the old key with the tag

Need a custom ComparableWritable
— Why?
— Isnt writable enough?

Example (from the textbook)



Job Merging

Using the TaggedText class

Reduce signature (of the merged reducer):

— reduce (TaggedText key, Iterable<XX> values,
Context context)

Original reducers had signature:

— Reduce (Text key, Iterable<XX> values, Context
context)

What does the “merged” reducer do?



Job Merging

 Can we generalize the TaggedText class?

 Handle any key type?



