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Lecture 1/7A
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Job Merging

Two jobs that read the same data
But otherwise are unrelated

If loading and parsing the data is expensive
Let’s do this only once
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Job Merging

* |n effect we make the mappers read same data
— Already the case

e And we make the reducers read same data

— Presumably the two mappers output different data
— How?

* Note: We're not limited to merging two jobs



Job Merging

What will it take?

Both jobs must have the same map output key/value
— |Is there a way to avoid this?
— How about a union type for key, or value, or both?

Best applied to existing, frequently run jobs
Requires the code to be merged



Job Merging

e Basicidea

* Merge the mapper code:
— Does the work of both “original” mappers
— Adds data to any output indicating the origin

e Reducer code:

— |dentify input type based on extra data in the key
— Separate the output with MultipleOutputs



Job Merging

* New mapper does work of both mappers
— For each input record

|H

— Do the work of first “original” mapper
— Do the work of second “original” mapper

— Might need to write multiple times
* Why?

* Add data to the key to distinguish the two



Job Merging

This pattern can be simplified by

implementing a custom class for the new
intermediate key

Combines the old key with the tag

Need a custom ComparableWritable
— Why?
— Isnt writable enough?

Example (from the textbook)



Job Merging

Using the TaggedText class

Reduce signature (of the merged reducer):

— reduce (TaggedText key, Iterable<XX> values,
Context context)

Original reducers had signature:

— Reduce (Text key, Iterable<XX> values, Context
context)

What does the “merged” reducer do?



Job Merging

 Can we generalize the TaggedText class?

 Handle any key type?



