
CS	378	–	Big	Data	Programming	

Lecture	2	
Map-Reduce	

CS	378	-	Fall	2017	 Big	Data	Programming	 1	



MapReduce	

•  Large	data	sets	are	not	new	
•  What	characterizes	a	problem	suitable	for	MR?	
– Most	or	all	of	the	data	is	processed	

•  But	viewed	in	small	increments	
•  For	the	most	part,	map	and	reduce	tasks	are	stateless	

– Write	once,	read	mulLple	Lmes	
•  Data	Warehouse	has	this	intended	usage	(write	once)	

–  Unstructured	data	vs.	structured/normalized	

•  Data	pipelines	are	common	
–  Chain	of	MR	jobs,	with	intermediate	results	

CS	378	-	Fall	2017	 Big	Data	Programming	 2	



MapReduce	
Table	1-1,		Hadoop	–	The	DefiniLve	Guide	

CS	378	-	Fall	2017	 Big	Data	Programming	 2.3	

Tradi&onal	RDBMS	 MapReduce	

Data	Size	 Gigabytes	 Petabytes	

Access	 InteracLve	and	batch	 Batch	

Updates	 Read	and	write	many	Lmes	 Write	once,	read	many	

TransacLons	 ACID	 None	

Structure	 Schema-on-write	 Schema-on-read	

Integrity	 High	 Low	

Scaling	 Nonlinear	 Linear	



MapReduce	

•  Tom	White,	in	Hadoop:	The	Defini/ve	Guide	

•  “MapReduce	works	well	on	unstructured	or	
semistructured	data	because	it	is	designed	to	
interpret	the	data	at	processing	/me.	In	other	words,	
the	input	keys	and	values	for	MapReduce	are	not	
intrinsic	proper/es	of	the	data,	but	they	are	chosen	
by	the	persona	analyzing	the	data.”	

CS	378	-	Fall	2017	 Big	Data	Programming	 4	



MapReduce	

•  When	wriLng	a	MapReduce	program	…	
–  You	don’t	know	the	size	of	the	data	
–  You	don’t	know	the	extent	of	the	parallelism	

•  MapReduce	tries	to	collocate	the	code	and	the	data	
on	a	compute	node	
–  Parallelize	the	I/O	
– Make	the	I/O	local	(versus	across	network)	

CS	378	-	Fall	2017	 Big	Data	Programming	 5	



MapReduce	

•  As	the	name	implies,	for	each	problem	we’ll	write	
– Map	method/funcLon	
–  Reduce	method/funcLon	

•  Terms	from	funcLonal	programming	

•  Map	
–  Apply	a	funcLon	to	each	input,	output	the	result	
– May	generate	mulLple	“outputs”	

•  Reduce	
–  Given	a	list	of	inputs,	compute	some	output	value	

CS	378	-	Fall	2017	 Big	Data	Programming	 6	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	DefiniLve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2017	 Big	Data	Programming	 7	



Map	FuncLon	
•  Map	input	is	a	stream	of	key/value	pairs	

–  Web	logs:	Server	name	(key),	log	entry	(value)	
–  Sensor	reading:	sensor	ID	(key),	sensed	values	(value)	
–  Document	ID	(key),	contents	(value)	

•  Map	funcLon	processes	each	input	pair	in	turn	

•  For	each	input	pair,	the	map	funcLon	can	(but	isn’t	
required	to)	emit	one	or	more	key/value	pairs	
–  Key/value	pair(s)	derived	from	the	input	key/value	pair	
–  Does	not	need	to	be	the	same	key	or	value	data	type	

CS	378	-	Fall	2017	 Big	Data	Programming	 8	



Reduce	FuncLon	

•  Reduce	input	is	a	stream	of	key/value-list	pairs	
–  These	are	the	key	value	pairs	emihed	by	the	map	funcLon	
grouped	by	key	

	
•  Reduce	funcLon	processes	each	input	pair	in	turn	

•  For	each	input	pair,	the	reduce	funcLon	can	(but	isn’t	
required	to)	emit	one	or	more	key/value	pairs	
–  Key	value	pair	derived	from	the	input	key/value-list	pair	
–  Does	not	need	to	be	the	same	key	or	value	data	type	

CS	378	-	Fall	2017	 Big	Data	Programming	 9	



WordCount	Example	

•  For	an	input	text	file	of	arbitrary	size,	or	
•  MulLple	text	files	of	arbitrary	size,	or	
•  An	arbitrary	number	of	documents	

•  Count	the	occurrences	of	all	the	words	that	appear	
in	the	input.	

•  Output:	
–  word1,	count	
–  word2,	count	
–  …	

CS	378	-	Fall	2017	 Big	Data	Programming	 10	



WordCount	Example	-	Map	

•  Map	input	is	a	stream	of	key/value	pairs	
–  File	posiLon	in	bytes	(key),	line	of	text	(value)	

•  Map	funcLon	processes	each	input	pair	in	turn	
–  Extract	each	word	from	the	line	of	text	input	
–  Emits	a	key/value	pair	for	each	word:			<the-word,	1>	

•  For	each	input	pair,	the	map	funcLon	emits	mulLple	
key/value	pairs	
–  Key	is	a	text	string	(the	word),	value	is	a	number	

CS	378	-	Fall	2017	 Big	Data	Programming	 11	



WordCount	Example	-	Reduce	
•  Reduce	input	is	a	stream	of	key/value-list	pairs	

–  These	are	the	key	value	pairs	emihed	by	the	map	funcLon	
–  Key	is	a	text	string	(the	word),	value	is	a	list	of	some	number	of	
the	value	“1”	

–  Hadoop	has	grouped	data	together	by	key	
	

•  Reduce	funcLon	processes	each	input	pair	in	turn	
–  Sums	the	values	in	the	value-list	

•  For	each	input	pair,	the	reduce	funcLon	emits	a	key/
value	pair	
–  Key	is	a	text	string	(the	word),	value	is	total	count	for	that	word	

CS	378	-	Fall	2017	 Big	Data	Programming	 12	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	DefiniLve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	-	Fall	2017	 Big	Data	Programming	 13	



MapReduce	
(from	cubrid.org)	

CS	378	-	Fall	2017	 Big	Data	Programming	 14	



Java	and	Maven	Review	
•  Directory	structure	expected	by	maven	(supported	in	IDEs):	

–  Project	directory	(example	name:	bdp)	
–  Source	code	directory:		bdp/src/main/java	
–  The	Java	package	structure	appears	in	the	“java”	directory	
–  Ex:		bdp/src/main/java/com/refactorlabs/cs378/assign1	
–  A	class	defined	in	the	com.refactorlabs.cs378.assign1	package	placed	here	
–  Ex:		bdp/src/main/java/com/refactorlabs/cs378/assign1/WordCount.java	

•  Easy	setup	-	Create	your	project	directory	
–  Place	pom.xml	in	this	directory	
–  Place	WordCount.java	as	shown	above	
–  Import	the	maven	pom.xml	into	your	IDE.	

CS	378	-	Fall	2017	 Big	Data	Programming	 15	



Assignment	ArLfacts	
•  For	each	assignment,	there	will	be	one	or	more	arLfacts	

to	submit:	
–  Java	code	

•  Source	files	in	one	directory	(for	easy	inspecLon)	
•  Source	files	in	src/main/java/…	structure	(use	“tar”)	

–  Build	info:	pom.xml	file	used	for	maven	
•  An	iniLal	pom.xml	file	will	be	provided,	and	we’ll	expand	this	during	
the	semester	

–  Program	outputs	
•  Extracted	from	HDFS	

•  ArLfacts	required	for	each	assignment	will	be	listed.	

CS	378	-	Fall	2017	 Big	Data	Programming	 16	



Assignment	1	

•  Build	a	JAR	file	
•  Upload	to	AWS	S3	
•  Create	a	cluster	using	ElasLc	MapReduce	(EMR)	
•  Run	your	map-reduce	job	on	EMR	cluster	
•  Download	the	output	
•  ArLfacts	to	submit	
–  zip	or	tar	of	all	source	files	in	one	(flat)	directory	
–  tar	of	project	(will	include	pom.xml	and	source	files)	
–  Output	
	

CS	378	-	Fall	2017	 Big	Data	Programming	 17	


