CS 378 — Big Data Programming

Lecture 2
Map-Reduce

CS 378 - Fall 2017 Big Data Programming



MapReduce

* Large data sets are not new
 What characterizes a problem suitable for MR?

— Most or all of the data is processed
e But viewed in small increments
* For the most part, map and reduce tasks are stateless

— Write once, read multiple times
* Data Warehouse has this intended usage (write once)

— Unstructured data vs. structured/normalized

e Data pipelines are common

— Chain of MR jobs, with intermediate results



MapReduce

Table 1-1, Hadoop — The Definitive Guide

_ Traditional RDBMS MapReduce

Data Size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times Write once, read many
Transactions ACID None

Structure Schema-on-write Schema-on-read
Integrity High Low

Scaling Nonlinear Linear

CS 378 - Fall 2017 Big Data Programming 2.3



MapReduce

* Tom White, in Hadoop: The Definitive Guide

e “MapReduce works well on unstructured or
semistructured data because it is designed to
interpret the data at processing time. In other words,
the input keys and values for MapReduce are not
intrinsic properties of the data, but they are chosen

by the persona analyzing the data.”




MapReduce

* When writing a MapReduce program ...
— You don’t know the size of the data

— You don’t know the extent of the parallelism

 MapReduce tries to collocate the code and the data
on a compute node
— Parallelize the 1/0
— Make the I/0O local (versus across network)



MapReduce

As the name implies, for each problem we’ll write
— Map method/function
— Reduce method/function

Terms from functional programming

Map

— Apply a function to each input, output the result
— May generate multiple “outputs”

Reduce

— Given a list of inputs, compute some output value



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

CS 378 - Fall 2017 Big Data Programming



Map Function

Map input is a stream of key/value pairs

— Web logs: Server name (key), log entry (value)

— Sensor reading: sensor ID (key), sensed values (value)
— Document ID (key), contents (value)

Map function processes each input pair in turn

For each input pair, the map function can (but isn’t
required to) emit one or more key/value pairs

— Key/value pair(s) derived from the input key/value pair
— Does not need to be the same key or value data type



Reduce Function

* Reduce input is a stream of key/value-list pairs

— These are the key value pairs emitted by the map function
grouped by key

 Reduce function processes each input pair in turn

* For each input pair, the reduce function can (but isn’t
required to) emit one or more key/value pairs

— Key value pair derived from the input key/value-list pair
— Does not need to be the same key or value data type



WordCount Example

For an input text file of arbitrary size, or
Multiple text files of arbitrary size, or
An arbitrary number of documents

Count the occurrences of all the words that appear
in the input.

Output:

— word1l, count

— word2, count



WordCount Example - Map

 Map input is a stream of key/value pairs
— File position in bytes (key), line of text (value)

 Map function processes each input pair in turn
— Extract each word from the line of text input
— Emits a key/value pair for each word: <the-word, 1>

* For each input pair, the map function emits multiple
key/value pairs
— Key is a text string (the word), value is a number



WordCount Example - Reduce

* Reduce input is a stream of key/value-list pairs
— These are the key value pairs emitted by the map function

— Key is a text string (the word), value is a list of some number of
the value “1”

— Hadoop has grouped data together by key

* Reduce function processes each input pair in turn
— Sums the values in the value-list

* For each input pair, the reduce function emits a key/
value pair

— Key is a text string (the word), value is total count for that word



MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

CS 378 - Fall 2017

Big Data Programming

13



MapReduce

(from cubrid.org)

(6) wrile

(4) local write

lnrm Map Intermediate files Reduce Output
es

fi phasr (on local disks) phase files
CS 378 - Fall 2017 Big Data Programming

14



Java and Maven Review

* Directory structure expected by maven (supported in IDEs):
— Project directory (example name: bdp)
— Source code directory: bdp/src/main/java
— The Java package structure appears in the “java” directory
— Ex: bdp/src/main/java/com/refactorlabs/cs378/assignl
— A class defined in the com.refactorlabs.cs378.assign1 package placed here
— Ex: bdp/src/main/java/com/refactorlabs/cs378/assign1/WordCount.java

e Easy setup - Create your project directory

— Place pom.xml in this directory
— Place WordCount.java as shown above

— Import the maven pom.xml into your IDE.



Assignment Artifacts

* For each assignment, there will be one or more artifacts
to submit:
— Java code

* Source files in one directory (for easy inspection)
* Source filesin src/main/java/... structure (use “tar”)

— Build info: pom. xm1 file used for maven

* Aninitial pom.xml file will be provided, and we’ll expand this during
the semester

— Program outputs
e Extracted from HDFS

e Artifacts required for each assignment will be listed.



Assignment 1

Build a JAR file

Upload to AWS S3

Create a cluster using Elastic MapReduce (EMR)
Run your map-reduce job on EMR cluster
Download the output

Artifacts to submit

— zip or tar of all source files in one (flat) directory
— tar of project (will include pom.xml and source files)

— QOutput



