CS 378 — Big Data Programming

Lecture 23
Closures, Caching, Partitions



Review

* Assignment 11
— Create user sessions
— Order events by timestamp, event type, subtype
— Order sessions by user ID

— Partition sessions by referring domain
— Sample SHOWER sessions (1 in 10)



Distributed Spark Application

Learning Spark, Figure 7-1

Spark Driver

Cluster Master
Mesos, YARN, or
Standalone

v v v

Cluster Worker Cluster Worker Cluster Worker

Executor Executor Executor

CS 378 - Fall 2017 Big Data Programming



Distributing a Spark Application

e Spark Driver runs your main () method
— Converts Spark program into tasks
— Creates an execution plan based on DAG

e DAG is derived from transformations

— Performs optimization (like: pipelining map()’s)

* Task are bundled up to be sent to cluster

— Cluster has multiple task executors



Distributing a Spark Application

* Scheduling individual tasks
— Executors register with driver
— Tasks scheduled based on data location
— Cached data is tracked (for future task scheduling)

* Driver exposes data on task status



Distributing a Spark Application

* With Hadoop the JAR was sent to workers
— Spark also needs to get the code to workers

 Hadoop has two tasks: map, reduce
— Instantiation takes place on the workers

e Spark sends object instances to workers
— Individual tasks defined in your Spark code
— Objects are serialized (we use Java serialization)



Closures

* Functions as first class objects
— Can be passed to a function as an argument
— Can be returned from a function

— Can be assigned to variables

 Closures contain free variables that are bound
in the lexical environment/scope



Closures

* |n Scala, functions as a type are built-in

* |nJava, closures are anonymous inner classes
— Define an object that implements an interface

— Interface requires implementation of an abstract
method

— In Spark API, that method is call ()



Closures

* QOur Java functions are:
— Instantiated
— Sent off to the worker tasks (via serialization)
— Each task gets its own copy (no communication)

* Non-local references will cause containing
object to be serialized as well.

— Variable value types must be serializable



Closures — Issues in Java

e A function references a method in an
enclosing scope

— Method itself cannot be serialized

— The entire containing class must be serialized

* |ssues
— This class is not serializable
— The associated data might be large



Persistence

e Recall that RDDs are recomputed as needed
— An action initiates evaluation
— Additional action results in another evaluation

 An RDD can be persisted for efficiency
 Making an RDD persistent:

— cache ()

—persist (Storagelevel level)



Persistence Options

From: http://training.databricks.com/workshop/itas_workshop.pdf

transformation

description

MEMORY_ ONLY

MEMORY ONLY 2,
MEMORY AND DISK 2, etc

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, some partitions
will not be cached and will be recomputed on the fly
each time they're needed.This is the default level.

Store RDD as deserialized Java objects in the JVM.

If the RDD does not fit in memory, store the partitions
that don't fit on disk, and read them from there when
they're needed.

Store RDD as serialized Java objects (one byte array
per partition).This is generally more space-efficient
than deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

Similar to MEMORY_ONLY_SER, but spill partitions
that don't fit in memory to disk instead of recomputing
them on the fly each time they're needed.

Same as the levels above, but replicate each partition
on two cluster nodes.

CS 378 - Fall 2017

Big Data Programming

12



Partitioning

* Prudent partitioning can greatly reduce the
amount of communication (shuffle)

e |f an RDD is scanned only once, no need

* |f an RDD is reused multiple times in key-
oriented operations
— Partitioning can improve performance significantly



Partitioning
e Partitioning on pair RDDs (key, value)

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge in the last hour of events

 We'll be joining sessions and events by userlID



Partitioning

Figure 4-4, from Learning Spark

userData joined events

—

St

Q

\ / SN\ L

<
X
Q

=N

"0‘«

AN

>
network communication

CS 378 - Fall 2017 Big Data Programming

15



Partitioning
Figure 4-5, from Learning Spark

userData joined events

/

network communication

local reference

CS 378 - Fall 2017 Big Data Programming

16



Partitioning

* Consider an RDD containing user sessions
— All users over some time period (day or week)
— We want to merge events, multiple times

* To set up for this:
— Create the session RDD
— Partition (call partitionBy (), a transformation)
— Persist



