CS 378 — Big Data Programming

Lecture 24
More on Partitions
Accumulators



Review

* Assignment 11
— Create user sessions
— Order events by timestamp, event type, subtype
— Order sessions by user ID

— Partition sessions by city
— Sample SHOWER sessions (1 in 10)



Partitioning

* Prudent partitioning can greatly reduce the
amount of communication (shuffle)

e |f an RDD is scanned only once, no need

* |f an RDD is reused multiple times in key-
oriented operations
— Partitioning can improve performance significantly



Partitioning

Figure 4-4, from Learning Spark

userData joined events

—

St

Q

\ / SN\ L

<
X
Q

=N

"0‘«

AN

>
network communication

CS 378 - Fall 2017 Big Data Programming



Partitioning
Figure 4-5, from Learning Spark

userData joined events

/

network communication

local reference

CS 378 - Fall 2017 Big Data Programming



Partitioning

* Once an RDD is created with partitionBy () Or
other transformation that implicitly partitions,

* You should persist the RDD, otherwise the
partitioning will be repeated on the next
action



Partitioning

Some transformations automatically return an
RDD with known partitioning

sortByKey () —range partitioned
groupByKey () —hash partitioned

Some transformations “forget” parent
partitioning
—map ()



Benefits of Partitioning

 Many transformations shuffle data across the
network

* All these will benefit from partitioning
— cogroup ()
— groupWith ()
— join ()
— leftOuterJoin ()
— rightOuterJoin ()



Benefits of Partitioning

* And these will benefit from partitioning
—groupByKey ()
— reduceByKevy ()
— combilneByKey ()
— lookup ()



Benefits of Partitioning

* Transformations on a single, partitioned RDD
— Computed locally on a machine
— Reduced result is sent to the master machine

* Binary transformations like cogroup (), join ()

— Prepartitioning will cause one RDD not to be
shuffled

— If both RDDs have the same partitioner and are on
the same machine (e.g., from mapvalues ())

— No shuffling will occur



Partitioning
Which partitioner is set on output?

Depends on the parent RDDs’ partitioners
By default, hash partitioner

— Number of partitions is the level of parallelism

If one parent has an explicit partitioner

— Use it

If both have an explicit partitioner, use the first



Partitioning

To maximize the potential for partitioning-
related optimizations, instead of map() use

mapValues ()
flatMapValues ()

Why?
— They preserve the key



Custom Partitioners

e Partitioners used by default:
— HashPartitioner
— RangePartitioner

* Custom partitioner
— Subclass Partitioner

— Implement the required methods
* numPartitions ()
* getPartition (key)
* equals ()



Accumulators

In our session generator app,

Suppose we wanted to count the number of
sessions that are sampled (SHOWER, 1 in 10)

How would we do this?

How did we do this using Hadoop map-reduce?



Accumulators

* An accumulator provides a means for

aggregating values from worker nodes back to
the driver node.

* Create an accumulator from the Spark context

* Increment the accumulator in functions
passed to worker nodes



Accumulators

* For failures or re-evaluation, what happens?

e Actions:

— Each task’s update applied only once

* Transformations:
— No guarantee that task updates applied only once
— Re-evaluation will update accumulator each time



