
CS	378	–	Big	Data	Programming	

Lecture	24	
More	on	Par::ons	

Accumulators	



Review	

•  Assignment	11	
– Create	user	sessions	
– Order	events	by	:mestamp,	event	type,	subtype	
– Order	sessions	by	user	ID	
– Par::on	sessions	by	city	
– Sample	SHOWER	sessions	(1	in	10)	

Big	Data	Programming	 2	CS	378	-	Fall	2017	



Par::oning	

•  Prudent	par::oning	can	greatly	reduce	the	
amount	of	communica:on	(shuffle)	

•  If	an	RDD	is	scanned	only	once,	no	need	
•  If	an	RDD	is	reused	mul:ple	:mes	in	key-
oriented	opera:ons	
– Par::oning	can	improve	performance	significantly	

Big	Data	Programming	 3	CS	378	-	Fall	2017	



Par::oning	
Figure	4-4,	from	Learning	Spark	

Big	Data	Programming	 4	CS	378	-	Fall	2017	



Par::oning	
Figure	4-5,	from	Learning	Spark	

Big	Data	Programming	 5	CS	378	-	Fall	2017	



Par::oning	

•  Once	an	RDD	is	created	with	partitionBy()	or	
other	transforma:on	that	implicitly	par::ons,	

•  You	should	persist	the	RDD,	otherwise	the	
par::oning	will	be	repeated	on	the	next	
ac:on	

Big	Data	Programming	 6	CS	378	-	Fall	2017	



Par::oning	

•  Some	transforma:ons	automa:cally	return	an	
RDD	with	known	par::oning	

•  sortByKey()	–	range	par::oned	
•  groupByKey()	–	hash	par::oned	

•  Some	transforma:ons	“forget”	parent	
par::oning	
– map() 

Big	Data	Programming	 7	CS	378	-	Fall	2017	



Benefits	of	Par::oning	

•  Many	transforma:ons	shuffle	data	across	the	
network	

•  All	these	will	benefit	from	par::oning	
–  cogroup()	
–  groupWith()	
–  join() 
–  leftOuterJoin() 
–  rightOuterJoin() 

Big	Data	Programming	 8	CS	378	-	Fall	2017	



Benefits	of	Par::oning	

•  And	these	will	benefit	from	par::oning	
– groupByKey()	
– reduceByKey()	
– combineByKey() 
– lookup() 

Big	Data	Programming	 9	CS	378	-	Fall	2017	



Benefits	of	Par::oning	

•  Transforma:ons	on	a	single,	par::oned	RDD	
– Computed	locally	on	a	machine	
– Reduced	result	is	sent	to	the	master	machine	

•  Binary	transforma:ons	like	cogroup(), join() 
– Prepar::oning	will	cause	one	RDD	not	to	be	
shuffled	

–  If	both	RDDs	have	the	same	par::oner	and	are	on	
the	same	machine	(e.g.,	from	mapValues())	

– No	shuffling	will	occur	
Big	Data	Programming	 10	CS	378	-	Fall	2017	



Par::oning	

•  Which	par::oner	is	set	on	output?	

•  Depends	on	the	parent	RDDs’	par::oners	
•  By	default,	hash	par::oner	
– Number	of	par::ons	is	the	level	of	parallelism	

•  If	one	parent	has	an	explicit	par::oner	
– Use	it	

•  If	both	have	an	explicit	par::oner,	use	the	first	
Big	Data	Programming	 11	CS	378	-	Fall	2017	



Par::oning	

•  To	maximize	the	poten:al	for	par::oning-
related	op:miza:ons,	instead	of	map()	use	

•  mapValues() 
•  flatMapValues() 

•  Why?	
– They	preserve	the	key	

Big	Data	Programming	 12	CS	378	-	Fall	2017	



Custom	Par::oners	

•  Par::oners	used	by	default:	
–  HashPartitioner 
–  RangePartitioner 

•  Custom	par::oner	
– Subclass	Partitioner 
–  Implement	the	required	methods	
•  numPartitions() 
•  getPartition(key) 
•  equals() 

Big	Data	Programming	 13	CS	378	-	Fall	2017	



Accumulators	

•  In	our	session	generator	app,	
•  Suppose	we	wanted	to	count	the	number	of	
sessions	that	are	sampled	(SHOWER,	1	in	10)	

•  How	would	we	do	this?	

•  How	did	we	do	this	using	Hadoop	map-reduce?	

Big	Data	Programming	 14	CS	378	-	Fall	2017	



Accumulators	

•  An	accumulator	provides	a	means	for	
aggrega:ng	values	from	worker	nodes	back	to	
the	driver	node.	

•  Create	an	accumulator	from	the	Spark	context	

•  Increment	the	accumulator	in	func:ons	
passed	to	worker	nodes	

Big	Data	Programming	 15	CS	378	-	Fall	2017	



Accumulators	

•  For	failures	or	re-evalua:on,	what	happens?	

•  Ac:ons:	
– Each	task’s	update	applied	only	once	

•  Transforma:ons:	
– No	guarantee	that	task	updates	applied	only	once	
– Re-evalua:on	will	update	accumulator	each	:me		

Big	Data	Programming	 16	CS	378	-	Fall	2017	


