
CS	378	–	Big	Data	Programming	

Lecture	3	
Anatomy	of	a	Hadoop	
Map-Reduce	Program	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.1	



Assignment	1	Update	

•  AWS	sites	

•  Running	the	example	on	AWS	
–  Log	files:	controller,	syslog	

•  Other	QuesPons?	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.2	



Map-Reduce	Code	

•  main() and run()	methods	
•  Job	object	-	Collects	up	all	the	specs	for	the	job	

–  Where	is	the	JAR	file	to	distribute?	
–  Type	of	the	output	pair	
–  Mapper	and	Reducer	classes	
–  Input	and	output	file	formats	
–  Input	file(s),	output	directory	

•  ConfiguraPon	object	–	forwarded	to	map(),	reduce() 
–  Job	level	parameters	communicated	via	this	object	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.3	



Map-Reduce	Code	

•  MapClass	
– Extends	Mapper,	declaring	the	input	and	output	
pair	types	for	the	map()	method	

•  map()	method	
– Arguments:	

•  Input	key/value	pair	
•  Context object	

– Output	done	via	the	context	object	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.4	



Map-Reduce	Code	

•  ReduceClass	
– Extends	Reducer,	declaring	the	input	and	output	
pair	types	for	the	reduce() method	

	
•  reduce()	method	
– Arguments:	

•  Input	pair:	key	and	value	list	
•  Context object	

– Output	done	via	the	context	object	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.5	



Map-Reduce	Code	

•  map()	and	reduce()	input	pair	and	output	pair	types	
•  Derived	from	Writable 

–  readFields(DataInput in) 
–  write(DataOutput out) 

•  Text,	IntWritable,	LongWritable	all	implement	Writable 
–  As	do	many	other	types,	some	of	which	we	will	use	

•  You	can	design	a	custom	class	that	implements	
Writable 

CS	378	–	Fall	2017	 Big	Data	Programming	 3.6	



Map-Reduce	Code	
•  Combiner	–	combines	mulPple	outputs	from	a	Mapper	

before	shuffle	

•  Input	and	output	pair	types	must	be	the	same.	
–  Why?	

•  When	can	a	combiner	be	used?	
–  Map	output	can	be	processed	(“combined”)	even	through	we	
do	not	see	all	values	associated	with	the	key	

–  Combiner	output	can	be	interpreted	by	reducer	
–  Word	count,	and	many	other	counPng	applicaPons	can	use	a	
combiner.	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.7	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	DefiniPve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	–	Fall	2017	 Big	Data	Programming	 3.8	



MapReduce	-	Unit	Test	

•  Would	like	a	means	for	tesPng	map()	and	
reduce()	methods	locally	
– No	need	to	upload	to	AWS	or	run	on	Hadoop	
– Support	incremental	development	

•  Detect	regression	errors	quickly	

•  mrunit	and	mockito	support	unit	tesPng	of	
Hadoop	apps	

CS	378	–	Fall	2017	 Big	Data	Programming	 3.9	


