CS 378 — Big Data Programming

Lecture 5
Summarization Patterns

CS 378 — Fall 2017 Big Data Programming



Review

* Assignment 2 — Questions?

* mrunit— How do you test map () or reduce ()
calls that produce multiple outputs?

* |ssues with calculating variance



Summarization

e Other summarizations of interest
— Min, max, median

* Suppose we are interested in these metrics for
paragraph length (Assignment 2 data)

— If paragraph lengths are normally distributed, then the
median will be very near the mean

— If the distribution of paragraph lengths is skewed, then the
mean and median will be very different



Summarization

Min and max are straightforward

For each paragraph, output two values

— Min length (the length of the current paragraph)
— Max length (the length of the current paragraph)
— Key?

Combiner will get a key and list of values pair
— Select the min, max from the list, output the values
— Key?

Reducer does the same



Summarization

e Median
— Get all the values, sort them, then find the middle

e Since our computation is distributed, no mapper
sees all the values

* Should we send them all to one reducer?
— Not utilizing map-reduce (computation not distributed)
— Data sizes likely too large to keep in memory



Summarization

Median

— Keep the unique paragraph lengths, and
— The frequency of each length

Map output:
— <paragraph length, 1>

Combiner gets a list of these pairs and updates the
count for recurring lengths

Reducer does the same, then computes the median



Summarization

 Median
— Hadoop provides the SortedMapWritable class
— Can associate a frequency count with a paragraph length

— Keeps the lengths in sorted order

e See the example in Chapter 2 of Map-Reduce Design
Patterns

* How could we compute all in one pass over the data?

— min, max, median



Counters

 Hadoop map-reduce infrastructure provides counters
— Accessed by group name

— Cannot have a large number of counters
* For example, can’t use counters to solve WordCount

— A few tens of counters can be used

* Counters are stored in memory on JobTracker



Counters

Figure 2-6, MapReduce Design Patterns

Counting
Mapper

TaskTracker

.\ Job Success Counter A
C;:::::? TasKTracker JobTracker E::::::g
Counter D

W TaskTracker
— ./

CS 378 —Fall 2017 Big Data Programming



How Hadoop MapReduce Works

 We've seen some terms like:
— Job, JobTracker, TaskTracker (MapReduce 1)
— Job, ResourceManager, NodeManager (YARN, MapReduce 2)

e Let's look at what they do

e Details from Chapter 7, Hadoop: The Definitive Guide
4t Edition



How Hadoop MapReduce Works

CS 378 —Fall 2017

Figure 7-1, Hadoop: The Definitive Guide 4" Edition

MapReduce
program

client JUM :

2: get new application

ResourceManager
>

dlient node
" resource manager node
Sa: start container .~
8 allocate resources
§ NodeManager d
3: copyjob

resources : :
i Sb: launch

Q ‘_.-"(7: retrieve
B input splits task JVUM

Rt < Sree o ..
(e.g., HDFS)

11:run§

Big Data Programming

11



Job Submission

* Job submission
— Input files exist? Can splits be computed?
— Output directory exist?
* If yes, it fails. Hadoop expects to create this directory

— Copy resources to HDFS
* JAR files
e Configuration file
* Computed file splits



Resource Manager

Creates tasks (work to be done)
— Map task for each input split
— Requested number of reducer tasks
— Job setup, job cleanup tasks

Map tasks are assigned to task trackers that are “close”
to the input split location

— Data local preferred
— Rack local next

Reduce task can go anywhere. Why?
Scheduling algorithm orders the tasks



Task Execution

Configured for several map and reduce tasks
Each task has status info (state, progress, counters)

Periodically sends info to MRAppMaster

— Running, successful completion, failed
— Progress (% complete)

For a new task

— Copy files to local file system (JAR, configuration)

— Launch a new JVM (YarnChild drives execution)
— Load the mapper/reducer class and run the task



Task Progress

Read in input pair (mapper or reducer)
Write an output pair (mapper or reducer)
Set the status description

Increment a counter

Reporting progress



Task Progress

 Mapper — straightforward
— How much of the input has been processed

* Reducer — more complicated
— Sort, shuffle and reduce are considered here

— Progress is an estimate of how much of the total
work has been done

— One-third allocated to each



Shuffle

Figure 7-4, Hadoop: The Definitive Guide 4 Edition

Reduce
phase

reduce task

4

output

CS 378 —Fall 2017

Big Data Programming

17




MapReduce in Hadoop

Figure 2.4, Hadoop - The Definitive Guide

CS 378 —Fall 2017

Big Data Programming

18



