
CS	378	–	Big	Data	Programming	

Lecture	5	
Summariza9on	Pa:erns	

CS	378	–	Fall	2017	 Big	Data	Programming	 1	



Review	

•  Assignment	2	–	Ques9ons?	

•  mrunit	–	How	do	you	test	map()	or	reduce()	
calls	that	produce	mul9ple	outputs?	

•  Issues	with	calcula9ng	variance	

CS	378	–	Fall	2017	 Big	Data	Programming	 2	



Summariza9on	

•  Other	summariza9ons	of	interest	
– Min,	max,	median	

•  Suppose	we	are	interested	in	these	metrics	for	
paragraph	length	(Assignment	2	data)	
–  If	paragraph	lengths	are	normally	distributed,	then	the	
median	will	be	very	near	the	mean	

–  If	the	distribu9on	of	paragraph	lengths	is	skewed,	then	the	
mean	and	median	will	be	very	different	

CS	378	–	Fall	2017	 Big	Data	Programming	 3	



Summariza9on	

•  Min	and	max	are	straighWorward	
•  For	each	paragraph,	output	two	values	
– Min	length	(the	length	of	the	current	paragraph)	
– Max	length	(the	length	of	the	current	paragraph)	
–  Key?	

•  Combiner	will	get	a	key	and	list	of	values	pair	
–  Select	the	min,	max	from	the	list,	output	the	values	
–  Key?	

•  Reducer	does	the	same	

CS	378	–	Fall	2017	 Big	Data	Programming	 4	



Summariza9on	

•  Median	
–  Get	all	the	values,	sort	them,	then	find	the	middle	

•  Since	our	computa9on	is	distributed,	no	mapper	
sees	all	the	values	

•  Should	we	send	them	all	to	one	reducer?	
–  Not	u9lizing	map-reduce	(computa9on	not	distributed)	
–  Data	sizes	likely	too	large	to	keep	in	memory	

CS	378	–	Fall	2017	 Big	Data	Programming	 5	



Summariza9on	

•  Median	
–  Keep	the	unique	paragraph	lengths,	and	
–  The	frequency	of	each	length	

•  Map	output:	
–  <paragraph	length,	1>	

•  Combiner	gets	a	list	of	these	pairs	and	updates	the	
count	for	recurring	lengths	

•  Reducer	does	the	same,	then	computes	the	median	

CS	378	–	Fall	2017	 Big	Data	Programming	 6	



Summariza9on	

•  Median	
–  Hadoop	provides	the	SortedMapWritable	class	
–  Can	associate	a	frequency	count	with	a	paragraph	length	
–  Keeps	the	lengths	in	sorted	order	

•  See	the	example	in	Chapter	2	of	Map-Reduce	Design	
Pa1erns	

•  How	could	we	compute	all	in	one	pass	over	the	data? 		
–  min,	max,	median	

CS	378	–	Fall	2017	 Big	Data	Programming	 7	



Counters	

•  Hadoop	map-reduce	infrastructure	provides	counters	
–  Accessed	by	group	name	
–  Cannot	have	a	large	number	of	counters	

•  For	example,	can’t	use	counters	to	solve	WordCount	

– A	few	tens	of	counters	can	be	used	

•  Counters	are	stored	in	memory	on	JobTracker 

CS	378	–	Fall	2017	 Big	Data	Programming	 8	



Counters	
Figure	2-6,	MapReduce	Design	Pa:erns	

CS	378	–	Fall	2017	 Big	Data	Programming	 9	



How	Hadoop	MapReduce	Works	

•  We’ve	seen	some	terms	like:	
–  Job,	JobTracker,	TaskTracker	(MapReduce	1)	
–  Job,	ResourceManager,	NodeManager	(YARN,	MapReduce	2)	

•  Let’s	look	at	what	they	do	

•  Details	from	Chapter	7,	Hadoop:	The	Defini9ve	Guide	
4th	Edi9on	

CS	378	–	Fall	2017	 Big	Data	Programming	 10	



How	Hadoop	MapReduce	Works	
Figure	7-1,	Hadoop:	The	Defini9ve	Guide	4th	Edi9on	

CS	378	–	Fall	2017	 Big	Data	Programming	 11	



Job	Submission	

•  Job	submission	
–  Input	files	exist?	Can	splits	be	computed?	
– Output	directory	exist?	

•  If	yes,	it	fails.		Hadoop	expects	to	create	this	directory	
– Copy	resources	to	HDFS	

•  JAR	files	
•  Configura9on	file	
•  Computed	file	splits	

CS	378	–	Fall	2017	 Big	Data	Programming	 12	



Resource	Manager	
•  Creates	tasks	(work	to	be	done)	

–  Map	task	for	each	input	split	
–  Requested	number	of	reducer	tasks	
–  Job	setup,	job	cleanup	tasks	

•  Map	tasks	are	assigned	to	task	trackers	that	are	“close”	
to	the	input	split	loca9on	
–  Data	local	preferred	
–  Rack	local	next	

•  Reduce	task	can	go	anywhere.		Why?	
•  Scheduling	algorithm	orders	the	tasks	

CS	378	–	Fall	2017	 Big	Data	Programming	 13	



Task	Execu9on	

•  Configured	for	several	map	and	reduce	tasks	
•  Each	task	has	status	info	(state,	progress,	counters)	
•  Periodically	sends	info	to	MRAppMaster 
–  Running,	successful	comple9on,	failed	
–  Progress	(%	complete)	

•  For	a	new	task	
–  Copy	files	to	local	file	system	(JAR,	configura9on)	
–  Launch	a	new	JVM	(YarnChild drives	execu9on)	
–  Load	the	mapper/reducer	class	and	run	the	task	

CS	378	–	Fall	2017	 Big	Data	Programming	 14	



Task	Progress	

•  Read	in	input	pair	(mapper	or	reducer)	
•  Write	an	output	pair	(mapper	or	reducer)	
•  Set	the	status	descrip9on	
•  Increment	a	counter	
•  Repor9ng	progress	

CS	378	–	Fall	2017	 Big	Data	Programming	 15	



Task	Progress	

•  Mapper	–	straighWorward	
– How	much	of	the	input	has	been	processed	

•  Reducer	–	more	complicated	
– Sort,	shuffle	and	reduce	are	considered	here	
– Progress	is	an	es9mate	of	how	much	of	the	total	
work	has	been	done	

– One-third	allocated	to	each	

CS	378	–	Fall	2017	 Big	Data	Programming	 16	



Shuffle	
Figure	7-4,	Hadoop:	The	Defini9ve	Guide	4th	Edi9on	

CS	378	–	Fall	2017	 Big	Data	Programming	 17	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini9ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	–	Fall	2017	 Big	Data	Programming	 18	


