
CS	378	–	Big	Data	Programming	

Lecture	6	
Summariza9on	Pa:erns	

CS	378	–	Fall	2017	 Big	Data	Programming	 1	



Review	

•  Assignment	2	-	WordSta9s9cs	

•  We’ll	look	at	implementa9on	details	of:	
– Mapper	
–  Combiner	
–  Reducer	
–  Suppor9ng	classes	

•  Other	issues	
–  Number	precision	–	how	can	we	control	this	on	output?	

CS	378	–	Fall	2017	 Big	Data	Programming	 2	



File	Formats	

•  In	assignments	1	and	2,	we	have	used	
–  TextInputFormat 
–  TextOutputFormat 

•  Key	value	pairs:	
–  Input:	LongWritable/Text 
–  Output	(Assign	1):	Text/LongWritable 
–  Output	(Assign	2):	Text/WordStatisticsWritable 

•  The	input	file	is	just	lines	of	text	
–  How	does	the	LongWritable	get	generated?	

CS	378	–	Fall	2017	 Big	Data	Programming	 3	



File	Formats	

•  Input	formats	provide	an	instance	that	extends	
Hadoop	class	RecordReader 

•  RecordReader methods	
–  initialize(InputSplit, TaskAttemptContext) 
–  nextKeyValue() 
–  getCurrentKey() 
–  getCurrentValue() 
–  getProgress() 
–  close() 

CS	378	–	Fall	2017	 Big	Data	Programming	 4	



File	Formats	

•  What	does	TextInputFormat	do?	
–  Via	its	RecordReader	implementer	

•  Iden9fies	the	next	line	of	input	
–  Text	through	the	next	newline	

•  Creates	the	Text	object	with	this	content	
•  Calculates	the	posi9on	of	this	line	in	the	input	split	
•  Creates	the	LongWritable	with	this	number	
•  Reports	progress	via	getProgress() 

CS	378	–	Fall	2017	 Big	Data	Programming	 5	



File	Formats	

•  Key	value	pairs:	
–  Output:	Text/WordStatisticsWritable 

•  The	output	file	is	just	lines	of	text	
–  How	does	this	text	get	generated?	

•  Similar	to	input	formats,	output	is	controlled	by	
instances	that	extend	RecordWriter		

•  RecordWriter methods	
–  write(key, value) 
–  close() 

CS	378	–	Fall	2017	 Big	Data	Programming	 6	



File	Formats	

•  What	does	TextOutputFormat	do?	
–  Via	its	RecordWriter	implementer	

•  Calls	toString()	on	the	key,	writes	this	string	
•  Writes	a	tab	character	
•  Calls	toString()	on	the	value,	writes	this	string	

•  How	do	we	control	the	format	of	our	results	for	
WordSta9s9cs?	

CS	378	–	Fall	2017	 Big	Data	Programming	 7	



Summariza9on	

•  Another	summariza9on	of	interest	
–  Inverted	index	

•  Suppose	we	are	interested	in	indexing	document(s)	
by	individual	words	in	the	document(s)		
–  For	a	given	word,	which	documents	contain	it	
–  Indices	are	built	for	search	engines	to	quickly	iden9fy	
which	documents	are	relevant	

–  Interes9ng	for	anyone	inves9ga9ng	the	document(s)	

CS	378	–	Fall	2017	 Big	Data	Programming	 8	



Inverted	Index	

•  For	an	inverted	index	that	represents	which	
documents	an	individual	word	appears	in:	

•  What	is	the	final	output?	
–  Key:	word	
–  Value:	list	of	documents	the	word	appears	in	

•  Given	our	data	set	of	document(s)	
– What	should	the	mapper	do?	
– What	should	the	reducer	do?	
–  Can	we	use	a	combiner?	

CS	378	–	Fall	2017	 Big	Data	Programming	 9	



MapReduce	in	Hadoop	
Figure	2.4,		Hadoop	-	The	Defini9ve	Guide	

	

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineInputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33

CS	378	–	Fall	2017	 Big	Data	Programming	 10	



Inverted	Index	–	Assignment	3	

•  Data	set	example	
– Emails	

•  Output	
– Key	

•  Field	type	(To,	From,	Cc,	Bcc)	
•  Email	address	

– Value	
•  List	of	message	IDs	

CS	378	–	Fall	2017	 Big	Data	Programming	 11	


