
CS	378	–	Big	Data	Programming	

Lecture	9	
Complex	“Writable”	Types	

AVRO,	Protobuf		

CS	378	-	Fall	2017	 Big	Data	Programming	 1	

Review	

•  Assignment	4	–	WordStaQsQcs	using	Avro	

•  QuesQons/issues?	
– MRUnit	and	AVRO	

•  AVRO	keys,	values,	and	file	formats	
•  Method	names	in	generated	Java	code	

CS	378	-	Fall	2017	 Big	Data	Programming	 2	

Unit	Tests	with	AVRO	

•  MRUnit	understands	serializaQon	in	Hadoop	…	
– Writable	interface	(readFields()	and	write())	

•  We	need	tell	MRUnit	to	use	AVRO	serializaQon	

•  And	we	need	to	construct	our	expected	outputs	
–  For	map()	and	reduce()	expected	output	

•  And	we	need	to	construct	our	inputs	
–  For	reduce()	input	

CS	378	-	Fall	2017	 Big	Data	Programming	 3	

User	Defined	Writables	

•  Hadoop	provided	classes	cover	commonly	
used	types	and	data	structures	

•  But	we’re	likely	to	need	more	applicaQon	
specific	data	structures/types	

•  We	can	define	these	one	by	one	
– Must	implement	the	Writable	interface	
– This	will	become	tedious	

CS	378	-	Fall	2017	 Big	Data	Programming	 4	

User	Defined	Data	Types	

•  Where	might	we	look	for	a	soluQon?	
– How	are	ad	hoc	types	transferred	elsewhere?	

•  Web	formats	for	data	structures	
– XML,	JSON	
– Plus:	Human	readable,	self	describing	
– Minus:	verbose,	serializaQon	is	slower	

•  Java	serializaQon	
– We	write	the	serializaQon	code,	accessors	
– Again	tedious,	as	data	types	get	complex	

CS	378	-	Fall	2017	 Big	Data	Programming	 5	

User	Defined	Data	Types	

•  RPC	mechanisms	
– Marshall	data	in	objects	to	be	transferred	to	a	
“remote”	procedure	(no	shared	memory)	

– Usually	procedure	calls	share	memory	

•  Java	serializaQon	is	one	such	mechanism	
•  Some	others	we’ll	look	at:	
– Google	protocol	buffers	(protobufs)	
– AVRO	

CS	378	-	Fall	2017	 Big	Data	Programming	 6	

Protobuf	and	AVRO	

•  These	two	approaches	are	interesQng	in	that	
– They	allow	us	to	define	complex	types	in	a	schema	
language	or	IDL	(Interface	DefiniQon	Language)	

– They	handle	all	the	data	marshalling/serializaQon	
– They	create	”bindings”	for	various	langauges	

•  AVRO	was	designed	for	use	with	Hadoop	
•  Protobufs	require	a	Writable	wrapper	
– May	be	provided	now,	wasn’t	a	few	years	ago	

CS	378	-	Fall	2017	 Big	Data	Programming	 7	

Protobuf	Basics	
•  Protocol	buffers	(protobufs)	used	extensively	at	
Google	as	the	RPC	mechanism	
–  MulQple	language	support	(Java,	C++,	Python)	
–  Used	in	the	Google	map-reduce	framework	

•  The	schema	language	(IDL)	defines	“messages”,	
or	“protocol	buffers”	
–  Data	structures	containing	primiQve	data	types	
–  Required	or	opQonal	
–  Repeated	(array)	
–  Embedded	message	

CS	378	-	Fall	2017	 Big	Data	Programming	 8	

Protobuf	Example	

package stats;

option java_package = “com.refactorlabs.cs378.utils”;

option java_outer_classname = “WordStatisticsProto”;

message WordStatistics {

 required int64 document_count = 1;

 required int64 total_count = 2;

 required int64 sum_of_squares = 3;
 optional double mean = 4;

 optional double variance = 5;

}

CS	378	-	Fall	2017	 Big	Data	Programming	 9	

Schema	EvoluQon	
•  As	your	data	changes	and	you	update	the	message	definiQon	

•  Old	Java	code	can	read	and	use	data	wrimen	under	the	new	
schema	
–  It	simply	doesn’t	see	the	new	fields	

•  New	Java	code	can	read	and	use	data	wrimen	under	the	old	
schema	
–  New	fields	added	must	be	opQonal	
–  The	has()	methods	can	be	used	to	determine	where	new	fields	are	

unpopulated	

CS	378	-	Fall	2017	 Big	Data	Programming	 10	

AVRO	Basics	

•  AVRO	provides	serializaQon	of	objects	
–  RPC	mechanism	
–  Container	file	for	storing	objects	(schema	stored	also)	
–  Binary	format	as	well	as	text	format	

•  The	schema	language	allows	us	to	define	complex	
objects	
–  Schema	language	uses	JSON	syntax	
–  Data	structures	containing	primiQve	data	types	
–  Complex	types:	record,	enum,	array,	map,	union,	fixed	

CS	378	-	Fall	2017	 Big	Data	Programming	 11	

AVRO	Basics	

•  PrimiQve	types	
–  null
–  boolean
–  int, long
–  float, double
–  bytes, string

•  Union:	list	of	possible	types	
–  If	null	included,	field	can	have	no	value	

CS	378	-	Fall	2017	 Big	Data	Programming	 12	

AVRO	Basics	

•  Records	
–  name,	namespace	
–  doc	
–  aliases	
–  fields	

•  Name,	doc,	type,	default,	order,	aliases	

•  Enums	
–  name,	namespace	
–  aliases,	doc	
–  symbols	

CS	378	-	Fall	2017	 Big	Data	Programming	 13	

AVRO	Basics	

•  Arrays	
–  items	
{“type”: “array”, “items”: “string”}

•  Maps	
– values	
{“type”: “map”, “values”: “string”}	
– Keys	are	assumed	to	be	strings	

•  Fixed	
– Fixed	number	of	bytes	

	CS	378	-	Fall	2017	 Big	Data	Programming	 14	

AVRO	Basics	
•  With	a	schema	defined,	we	“compile”	it	to	create	

“bindings”	to	a	language	
•  Output	is	Java	source	code	(Python	available	too)	

–  Package	and	class	names	as	we	defined	them	

•  So	what	does	this	Java	class	do	for	us?	
–  Allows	instance	to	be	created	and	populated	
–  Allows	access	to	the	data	stored	therein	
–  Performs	serializaQon	

•  This	is	one	main	reason	for	using	AVRO	objects	
•  AVRO	objects	implement	Writable	for	use	in	Hadoop	mapReduce	
•  AVRO	objects	implement	other	stuff	(toString(),	parsing,	…)	

CS	378	-	Fall	2017	 Big	Data	Programming	 15	

Schema	EvoluQon	
•  As	your	data	changes	and	you	update	the	message	definiQon	

•  In	AVRO	objects,	the	writer’s	schema	is	included,	and	can	be	
compared		to	the	reader’s	schema	

•  Comparison	rules	and	rules	for	handling	missing	fields	(in	one	
schema	but	not	the	other)	can	be	found	here:	
–  hmp://avro.apache.org/docs/1.8.1/spec.html#Schema+ResoluQon	

CS	378	-	Fall	2017	 Big	Data	Programming	 16	

