CS 378 — Big Data Programming

Lecture 9
Complex “Writable” Types
AVRO, Protobuf

CS 378 - Fall 2017 Big Data Programming



Review
Assignment 4 — WordStatistics using Avro

Questions/issues?
— MRUnit and AVRO

AVRO keys, values, and file formats
Method names in generated Java code



Unit Tests with AVRO

MRUnit understands serialization in Hadoop ...
— Writable interface (readFields () and write ())

We need tell MRUnit to use AVRO serialization

And we need to construct our expected outputs

— Formap () and reduce () expected output

And we need to construct our inputs
— For reduce () input



User Defined Writables

 Hadoop provided classes cover commonly
used types and data structures

 But we're likely to need more application
specific data structures/types

 We can define these one by one
— Must implement the Writable interface
— This will become tedious



User Defined Data Types

* Where might we look for a solution?
— How are ad hoc types transferred elsewhere?

 Web formats for data structures
— XML, JSON
— Plus: Human readable, self describing
— Minus: verbose, serialization is slower

* Java serialization
— We write the serialization code, accessors
— Again tedious, as data types get complex



User Defined Data Types

e RPC mechanisms

— Marshall data in objects to be transferred to a
“remote” procedure (no shared memory)

— Usually procedure calls share memory
e Java serialization is one such mechanism
e Some others we’ll look at:

— Google protocol buffers (protobufs)
— AVRO



Protobuf and AVRO

* These two approaches are interestin

g in that

— They allow us to define complex types in a schema

language or IDL (Interface Definition La

nguage)

— They handle all the data marshalling/serialization

— They create "bindings” for various langauges

 AVRO was designed for use with Hac

oop

* Protobufs requireaWritable wra

oper

— May be provided now, wasn’t a few years ago



Protobuf Basics

* Protocol buffers (protobufs) used extensively at
Google as the RPC mechanism

— Multiple language support (Java, C++, Python)
— Used in the Google map-reduce framework

 The schema language (IDL) defines “messages”,
or “protocol buffers”
— Data structures containing primitive data types
— Required or optional
— Repeated (array)
— Embedded message



Protobuf Example

package stats;
option java package = “com.refactorlabs.cs378.utils”;

option java outer classname = “WordStatisticsProto”;

message WordStatistics {

required int64 document count = 1;
required into4 total count = 2;
required 1int64 sum of squares = 3;
optional double mean = 4;

optional double variance = 5;



Schema Evolution

As your data changes and you update the message definition

Old Java code can read and use data written under the new
schema

— It simply doesn’t see the new fields

New Java code can read and use data written under the old
schema

— New fields added must be optional

— The has() methods can be used to determine where new fields are
unpopulated



AVRO Basics

* AVRO provides serialization of objects
— RPC mechanism
— Container file for storing objects (schema stored also)
— Binary format as well as text format

 The schema language allows us to define complex
objects

— Schema language uses JSON syntax
— Data structures containing primitive data types
— Complex types: record, enum, array, map, union, fixed



AVRO Basics

* Primitive types
— null
— boolean
— 1nt, long
— float, double
— bytes, string

* Union: list of possible types

— If null included, field can have no value



AVRO Basics

e Records
— Name, hamespace
— doc

— aliases
— fields
* Name, doc, type, default, order, aliases
* Enums
— name, hamespace
— aliases, doc
— symbols



AVRO Basics

* Arrays
— items
{“type”: “array”, “items”: “string”}
* Maps
— values
{“type”: “map”, “values”: “string”}
— Keys are assumed to be strings
* Fixed
— Fixed number of bytes



AVRO Basics

With a schema defined, we “compile” it to create
“bindings” to a language

Output is Java source code (Python available too)
— Package and class names as we defined them

So what does this Java class do for us?
— Allows instance to be created and populated
— Allows access to the data stored therein

— Performs serialization
* This is one main reason for using AVRO objects
* AVRO objects implement Writable for use in Hadoop mapReduce
* AVRO objects implement other stuff (toString (), parsing, ...)



Schema Evolution

As your data changes and you update the message definition

In AVRO objects, the writer’s schema is included, and can be
compared to the reader’s schema

Comparison rules and rules for handling missing fields (in one
schema but not the other) can be found here:
— http://avro.apache.org/docs/1.8.1/spec.htmI#Schema+Resolution



