Component Connection Models*

David W. Franke, Daniel L. Dvorak!

Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Abstract

The relation between part and whole is the key to describing
the structure of a mechanism. Different modeling methods
have different concepts of what should count as a “part” of a
system, and how the parts should relate to each other. The
mathematical, differential-equation-based approach to mod-
eling taken in QSIM essentially says that the “parts” of a
mechanism are the continuous variables that characterize its
state, and their relations are mathematical constraints inher-
ited from the physical structure of the system.

However, a physical system frequently consists of a
set of components that relate through explicit connections
(a form of description that is frequently more meaningful to
a domain expert than the differential equations). This pa-
per describes CC, a model-building program that accepts a
component-connection description of a physical system and
translates it to the qualitative differential equations of QSIM.
CC provides facilities for component abstraction and hierar-
chical component definition, raising the level of abstraction
for modeling via QSIM. Component modes can be specified,
and are translated into QSIM operating regions. CC uses the
general variable types of bond graphs (a technique for dy-
namic physical system modeling). Finally, this component-
connection paradigm provides the framework for information
utilized in other model-based reasoning tasks such as diagno-
B1S.

1 Introduction

The component-connection paradigm [Abelson, Sussman
1985), [de Kleer 1985] provides a declarative, conceptually
uniform approach to specifying hierarchical system mod-
els. This paradigm states that models are constructed from
(less complex) components and connections among termi-
nals of these components. Further, connections among ter-
minals (more precisely, variables or parameters associated
with each terminal) are the only manner in which compo-

*This work has taken place in the Qualitative Reasoning Group at
the Artificial Intelligence Laboratory, The University of Texas at Austin.
Research of the Qualitative Reasoning Group is supported in part by
NSF grant IRI-8602665 and by NASA grants NAG 2-507 and NAG 9-
200.

TSupported by the AT&T Doctoral Support Program.

nents of the model can interact. We describe the CC system
[Franke, Dvorak 1989] which supports the definition of mod-
els via the component-connection paradigm in conjunction
with the QSIM system [Kuipers 1985], [Kuipers 1986]. CC
supports the definition of components in terms of QSIM prim-
itives and the construction of models from these primitives.
Model construction in CC uses the notion of variable types
for physical systems [Rosenberg, Karnopp 1983] in conjunc-
tion with conservation laws (¢f. [Rosenberg, Karnopp 1983],
[de Kleer, Brown 1985], [de Kleer 1985]). A component def-
inition can specify several modes which can be either static
(e.g. Working, Broken) or dynamic (determined by a model
variable).

Section 2 discusses the component-connection paradigm.
Section 3 discusses the concepts of CC. Sections 4 and 5 de-
scribe component and configuration definitions, respectively.
Section 6 describes future work planned for CC.

2 Component Connection Models

Many systems of interest allow models composed of compo-
nents and connections among these components. Further,
these components need not themselves be primitives of the
domain, and can be decomposed into less complex (possibly
primitive components) and associated connections. This rep-
resentation is common in Computer Aided Design (CAD) sys-
tems for mechanical and electrical design. Models specified in
this way provide a declarative specification of a design which
can be used for multiple purposes.

A system modeling the flow of fluids will involve tanks and
valves, and a system modeling an electrical circuit will involve
capacitors, resistors, and transistors. Each occurrence of one
of these components will introduce variables and constraints
which can be characterized once, but require unique instanti-
ations for each occurrence of the component. The ability to
characterize a component once provides a mechanism where
complex models can be described more concisely than enu-
merating the variables and constraints for each occurrence of
the component. To complete the model, the connections be-
tween components must be specified, and any implications of
these connections must be considered. In particular, compo-
nents may interact only at these connections, and constraints
which enforce conservation of flow at a connection must be

added.

-

3 CC Concepts

Two important high-level concepts of model definition in CC
are hierarchical component definitionsand component abstrac-
tion. Hierarchical component definitions permit components
to be defined in terms of (less complex) components and con-
nections between these components. A component definition
expressed in terms of other components is called composed.
These recursive definitions terminate with a component de-
fined in terms of QSIM primitives, namely variables and con-
straints among these variables. A component definition ex-
pressed in terms of QSIM constraints and variables is called
primitive.

The component abstraction concept is realized by requiring
a component interface definition independent of any definition
of the implementation of the component, either a composed or
a primitive definition. A component interface declaration de-
fines the component type name and the terminals and param-
eters of the component type. One or more component imple-
mentations can then be defined for a component interface, us-
ing either primitive definitions, composed definitions, or both.
This distinction of interface and implementation is modeled
after the entity and architecture constructs of the VHSIC
Hardware Description Language (VADL) [VHDL 1987].

Given the ability to define multiple implementations of a
component interface, a model builder may wish to reference
a component interface (i.e. a component type) in a composed
definition without specifying a particular implementation for
that component instance. This allows the modeller to delay
the selection of a particular implementation from model def-
inition time to model building time. The construct through
which such implementations are specified is called a config-
uration. (The configuration construct is also borrowed from
VHDL.) This notion of configuration is common in electri-
cal CAD systems, allowing alternative implementations and
parameter changes to be easily specified.

The final concept described here is that of general variable
types for physical systems, taken from [Rosenberg, Karnopp
1983). The bond graph modeling approach described in
[Rosenberg, Karnopp 1983] is a technique for describing dy-
namic physical systems independent of their domain (e.g.
electrical, mechanical, or hydraulic). Hence, the approach
also characterizes the model variables in a domain indepen-
dent manner. CC types model variables in this way, with the
following types:

e Effort

e Flow

e Momentum (the time integral of Effort)
e Displacement (the time integral of Flow)
e Energy

e Resistance

e Capacitance

To facilitate component definitions for particular domains,
CC provides mappings between these general variable types
and domain specific type names, such as voltage as the elec-
trical domain specific name for effort. The associated general
types are important in CC in that the processing of connec-
tions requires knowledge of variable types for such things as
applying the conservation of flow law. In CC, the variable
type names for the electrical domain might be mapped as
follows:

(effort voltage ny")
(flow current MTAY)
(resistance resistance "R")
(capacitance capacitance "C")
(displacement charge "gvy
(inductance inductance ngny
(momentum flux-linkage “F1")

4 Component Definition

A component definition is comprised of an interface and one or
more implementations. A component definition can be subse-
quently referenced in other component definitions to provide
hierarchical definitions. The content of these definitions is
described below, with examples of each.

4.1 Component Interface

Component interface definitions define a component type and
terminals and parameters of the type’s interface and the do-
main (e.g. electrical) of the component. Additional model
information such as terminal direction (e.g. input) can be
specified in the interface definition. Below is the interface
definition for a resistor component in the electrical domain.

(define-component-interface resistor "Resistor"
electrical
(terminals t1 t2))

4.2 Component Implementation

Component implementations can be either primitive (ex-
pressed in QSIM primitives) or composed (expressed in terms
of other components. The primitive implementation is de-
scribed and an example of the resistor is given. The com-
posed implementation is also described and an example using
the resistor component is given.

Primitive Implementation

A primitive component implementation consists of variable
and constraint declarations which an instance of the compo-
nent introduces into the model. Variables declared for a com-
ponent are associated either with a terminal of the component
or with the component itself, and are called terminal variables
and component variables, respectively. The names of termi-
nal and component variables must be unique for a component,

since both terminal variables and component variables can be
referenced in the constraints of the component. Information
required for each variable declaration is the variable name (a
symbol) and the variable type (a symbol corresponding to the
appropriate name for the domain).

In the domain of fluid flows, assuming that a tank is de-
fined as a component, examples of terminal variables would
be Inflow at the input terminal and Outflow at the drain ter-
minal. In the domain of electrical circuits, assuming that a
resistor is defined as a component, examples of terminal vari-
ables would be V1, the voltage at one terminal, and V2, the
voltage at the other terminal. Variables which correspond to
Flow in the domain of interest are typically defined as ter-
minal variables. Depending on the component being defined,
variables corresponding to Flow may also be defined as com-
ponent variables.

Component variables correspond to quantities of interest for
the component, and are related to other component variables
and to terminal variables via constraints. For example, in the
fluid flow domain, a tank would have terminal variables Inflow
and Outflow, and a component variable Netflow, which is the
difference of the Inflow and Outflow. In the electrical domain,
a resistor has component variables Voltage, Resistance, and
Current. Voltage interacts with the terminal variables V1
and V2 (the definition of voltage across a resistor), and also
with the component variables Resistance and Current (Ohm’s

Law).

4.2.1 Constraints

The constraints introduced by a component’s inclusion in a
model are specified in the same syntax as required by the
Define-QDE form (i.e. they are QSIM specific). Constraints
can be partitioned into groups which represent modes of the
component. Modes can be static (e.g. Working or Broken)
in which case the component is characterized by one set of
constraints throughout simulation. Modes can also designate
dynamic characterizations of the component, with the active
constraints for the model determined by the value of a model
variable. These dynamic modes are realized via QSIM oper-
ating regions.

Following is an example component definition from the elec-
trical domain.

(define-component-implementation
primitive resistor "Resistor in primitives"
(terminal-variables
(t1 (v1 voltage)
(i current))
(t2 (v2 voltage)
(i2 current)))
(component-variables
(v voltage display)
(r resistance independent))
(constraints
((ADD v v2 v1))
((MULT i r v))

; Voltage across terminals
((MINUS i i2) (mint

Ohm’s Law
inf) (0 0) (inf minf))))

The definition of two stalic modes of a resistor, Working
and Shorted, are as follows:

(define-component-implementation

(constraints
(vorking nil
1 ; as before
(shorted nil
((= v2 v1)) ; Voltage = at terminals
((= v 0)) ; ¥o voltage drop

((MINUS i i2) (minf inf) (0 0) (inf minf))
D))

The definition of dynamic modes is accomplished via a con-
dition on a variable. For example, suppose the resistor model
changes when the current (i) is greater than the landmark
I*. The associated dynamic modes are specified as:

(define-component-implementation
(constraints
(normal (<= i I%)
aha)
(abnormal (> i I#)
...))) ; Corresponding constraints

Composed Implementation

A composed implementation consists of (sub)component and
connection declarations which an instance of the component
introduces into the model. Each (sub)component must be
uniquely named within the component implementation defi-
nition, and references the component type of which it is an
instance. Additionally, a (sub)component instance declara-
tion can specify information (such as the quantity space) for
variables introduced by the instance. Given component defi-
nitions for a battery and a capacitor, the definition of a series
resistor-capacitor circuit can be specified as follows:

(define-component-interface RC
"Resistor-capacitor circuit")

(define-component-implementation composed RC
“Composed resistor-capacitor circuit" electrical
(components

(B battery (landmarks (v V#) (vi Vs)
(v2 (0)) (i (0 in1)))
(initable i))
(R resistor (landmarks (r R#)))
(C capacitor (landmarks (c C*))
(initable q)))
(connections
(w1 (b t1) (r t1))
(w2 (r t2) (c t1))
(w3 (c t2) (b t2))))

4,.2.2 Generated Variables and Constraints

A model variable of type effort is generated for each connec-
tion to represent the equivalence class of terminal variables
of type effort associated with a connection. The flow vari-
ables for terminals involved in a connection are constrained
by the flow conservation law (Kirchhoff’s Current Law, in the
electrical circuit domain). To add the constraint represent-
ing flow conservation, CC adopts the convention that flows
are positive into the component. It is important to keep this
convention in mind when specifying the constraints (involving
terminal variables of type flow) in primitive implementations
of components.

No explicit constraint representing Kirchoff’s Voltage Law
(sum of voltage drops in a loop is zero) is added by CC.
Rather, this law is implicitly enforced by QSIM’s constraint
propagation if every terminal has an associated effort vari-
able, and effort variables of a each component instance are
appropriately related (e.g. Ohm’s Law for a resistor, V = IR,
and V= V1-V2).

5 Configuration Definition

A configuration defines particular implementations for com-
ponent instances in the model. This allows the model builder
to succinctly specify alternative models. An implementation
can be specified for all instances of a component type, or for
specific instances of a component type. In addition to com-
ponent implementations, a configuration can specify a mode
and parameter values for all instances or specific instances
of a component type. A configuration is associated with ei-
ther a component interface or with a component implemen-
tation. For example, consider a circuit model which contains
two instances of resistor, such as the RC ladder network in
[Williams 1985]. In this model, the resistor instance names
are R1 and R3. A configuration specifying static modes for
these instances would be:

(define-component-configuration RC-Ladder-Configi
"RC ladder, R1 working, R3 shorted" RC-Ladder
(r1 (impl primitive) (mode working))

(r3 (impl primitive) (mode shorted)))

Specific implementation and/or mode information con-
cerning other (sub)components of the can be given also.
An alternative configuration which specifies a mode for all
(sub)components of type resistor would be:

(define-component-configuration RC-Ladder-Configi
“RC ladder, all resistors working" RC-Ladder
(resistor (impl primitive) (mode working)))

6 Future Work
6.1 Hierarchy

CC takes a hierarchical description and generates a "flat” de-
scription of the system. The description is termed ”flat” since

it expresses the system in QSIM primitives, namely variables
and constraints. Given that a system can be described hier-
archically, it is interesting to consider simulating the system
without completely decomposing the hierarchy. One approach
[Christian 1987] considers a component as an arbitrary con-
straint. Time scale abstraction [Kuipers 1987] also addresses
simulation of a hierarchy.

6.2 Quantitative Information

The mixed qualitative-quantitative reasoning system Q2
[Kuipers, Berleant 1988] makes it possible to incorporate in-
complete quantitative information into the derivation of be-
haviors. Specification of this quantitative information via a
CC model description will extend the breadth of models com-
prehended by CC.

6.3 A Language for Model Specification

Currently, CC is specific to QSIM and addresses those aspects
of a model which are required to develop the qualitative differ-
ential equation definition used by QSIM. We plan to examine
modifications to the syntax of CC so that models specified
in this syntax can be 1) mapped to other simulation environ-
ments (with appropriate changes in primitives) and 2) used
for other purposes such as causal reasoning for model-based
troubleshooting or teleological reasoning [Franke 1989).

7 Conclusions

The component-connection paradigm provides a declarative,
conceptually uniform approach to specifying hierarchical sys-
tem models. The initial implementation of CC supports this
model definition paradigm and provides a means for trans-
lating a structural model into a computational model. When
extended in the ways described above, this model definition
language will support other model-based reasoning tasks, as
well as other underlying computational languages.

Acknowledgements

This work is progressing under the guidance of Prof. Ben-
jamin Kuipers. Valuable comments and suggestions have also
been contributed by the qualitative reasoning community at
the UT-Austin Al Lab, especially Adam Farquhar and David
Throop.

References

[Abelson, Sussman 1985] Harold Abelson, Gerald J. Suss-
man, The Structure and Inierpretation of Computer Pro-
grams, MIT Press, 1985.

Christian 1987] Jim Christian, ”Component Hierarchies for
[p
QSIM”, Dec. 1987.

[de Kleer 1985] Johan de Kleer, "How Circuits Work”, in
Qualitative Reasoning About Physical Systems, Daniel G.
Bobrow, ed., (The MIT Press, Cambridge, MA 1985),
pp. 205-280. Reprinted from Artificial Intelligence Vol.
24, 1984.

[de Kleer, Brown 1985] Johan de Kleer, John Seely Brown,
” A Qualitative Physics Based on Confluences”, in Qual-
tlative Reasoning About Physical Systems, Daniel G. Bo-
brow, ed., (The MIT Press, Cambridge, MA 1985), pp.
7-83. Reprinted from Artificial Intelligence Vol. 24, 1984.

[Franke 1989] David W. Franke, ”Representing and Ac-
quiring Teleological Descriptions” in Proceedings of the
IJCAI-89 Workshop on Model-Based Reasoning, 1989.

[Franke, Dvorak 1989] David W. Franke, Daniel L. Dvorak,
”CC: Component Connection Models for Qualitative Sim-
ulation, A User’s Guide”, Al technical report (forthcom-
ing), Dept. of Computer Sciences, University of Texas at
Austin.

[Kuipers 1985) Benjamin J. Kuipers, ”Commonsense Reason-
ing about Causality: Deriving Behavior from Structure”,
in Qualitative Reasoning About Physical Systems, Daniel
G. Bobrow, ed., (The MIT Press, Cambridge, MA 1985),
pp. 169-203. Reprinted from Artificial Intelligence Vol.
24, 1984.

[Kuipers 1986] Benjamin J. Kuipers, "Qualitative Simula-
tion”, in Artificial Intelligence, Vol. 29, No. 3, (September
1986), pp. 289-338.

[Kuipers 1987] Benjamin Kuipers, ”Abstraction by Time-
Scale in Qualitative Simulation”, in Proceedings of the
Sixth National Conference on Artificial Intelligence, Seat-
tle, July 1987, pp. 621-625.

[Kuipers, Berleant 1988] Benjamin Kuipers, Daniel Berleant,
”Using Incomplete Quantitative Knowledge in Qualita-
tive Reasoning”, in Proceedings of the Seventh National
Conference on Artificial Intelligence, Saint Paul, August
1988, pp. 324-329.

[Rosenberg, Karnopp 1983] Ronald C. Rosenberg, Dean C.
Karnopp, Introduction to Physical System Dynamics,
McGraw-Hill, 1983.

[VHDL 1987] IEEE Standard VHDL Language Reference
Manual, IEEE Std. 1076-1987.

[Williams 1985] Brian C. Williams, ”Qualitative Analysis of
MOS Circuits”, in Qualitative Reasoning About Physical
Systems, Daniel G. Bobrow, ed., (The MIT Press, Cam-
bridge, MA 1985), pp. 281-346. Reprinted from Artificial
Intelligence Vol. 24, 1984.

