From Proceedings of
13t International Conference on
Software Engineering, pp. 344-352
Austin, TX, May 13-16, 1991

Hardware/Software CoDesign: A Perspective

David W. Franke, Martin K. Purvis

Microelectronics and Computer Technology. Corporation
3500 West Balcones Center Drive
Austin, TX 78759-6509

Abstract

Traditionally, computer systems development has
been characterized as hardware engineers supply-
ing general-purpose computing systems that are pro-
grammed by software engineers. However, develop-
ments in computing technology (e.g. computer aided
design capabilities, ASICs, etc.) have brought about a
reexamination of the traditional boundaries between
hardware and software engineering and a need for a
more flexible design style — one in which both the
hardware and software design options can be consid-
ered together. Since current hardware and software
design methodologies have their differences, a unified
“codesign” approach must be developed that will com-
prise both the hardware and software points of view.
Increasingly, computer system design of the future will
require this codesign approach.

1 What Is CoDesign?

Until recently, computer systems development has
been ordinarily characterized by the notion that hard-
ware engineers supply general-purpose computing sys-
tems, which are then programmed by software en-
gineers. Even as the use of microprocessors and
firmware during the 1980’s enabled more applications
to be accomplished in software instead of hardware,
this view of the computing world did not experience
much change. Software engineering and hardware de-
velopment were two activities which could be carried
out relatively independently. Indeed, the U.S. Gov-
ernment military standard for computer system de-
velopment [7] characterizes an independent hardware
and software development. Thus software specialists
could feel safe in the assumption that they needn’t
worry themselves too much about the “low-level” de-
tails of computer hardware. Furthermore, the grow-
ing acceptance of the “layered” model of computer

systems architecture seemed likely to protect soft-
ware practitioners from such concerns. But, now, de-
velopments in several areas of computing technology
have brought about a reexamination of the traditional
boundaries between hardware and software engineer-
ing and have cast doubt on the utility of maintaining
a major boundary between the two. In this regard,
we propose that a more fruitful approach to computer
system design is to combine the hardware and software
perspectives from the earliest stages of the design pro-
cess and exploit the design flexibility and efficient allo-
cation of function that such an approach offers. This
is called “hardware/software codesign”, or sometimes
simply, “codesign”.

1.1 Custom Chip Design

What are some of these developments that have cre-
ated a need for the codesign point of view? One of
them concerns improvements in computer-aided chip
design capabilities. It is useful to consider this and
other new technology developments in terms of the
primary concerns that must be addressed when new
computer systems are designed and produced:

e time-to-market
e performance
e system reliability

All three perspectives must be considered when assess-
ing the effects of any new methods or technologies on
future design practice, but for the moment we will con-
centrate on the first two items and consider the third
one later (section 2.4). For example, in the realm of
computing hardware, it has been customary to mark
progress in terms of the miniaturization and function-
ality of conventional general-purpose computers. But
now that 32-bit microprocessor-based personal com-
puters can be placed on any desktop, further perfor-

mance enhancements along these lines are approach-
ing a point of diminishing returns. Instead, focus is
shifting to systems where the computational power is
more distributed and specific to a given application.
The reason for this shift is due in part to improve-
ments in computer-aided design: custom-designed
high-performance chips, such as graphics processors,
can now be designed more easily and quickly, and con-
sequently the time-to-market penalty for developing
them has been reduced. As a result, trade-off consid-
erations with respect to the three perspectives listed
above now favor moving general-purpose computer ar-
chitectures in the direction of distributed computing
systems, with special-purpose computational elements
devoted to specific tasks, such as graphics display, key-
board control, disk controllers, etc. Thus functional-
ity is shifting from software (on the general-purpose
computer) to special-purpose hardware.

1.2 ASICs

Even more significant to the shifting boundaries of
hardware and software design has been the introduc-
tion of application-specific integrated circuits (ASICs)
implemented in gate arrays, sea-of-gates technologies,
gate matrix, and cell-based programmable logic ar-
rays. These can be more specific to a given cus-
tomer’s application than the special-purpose but rel-
atively generic chips mentioned above, and they too
have been made possible by the current generation
of automated CAD tools and chip fabrication capa-
bilities. Using ASICs, specific algorithms of a com-
putationally intensive nature can be implemented in
silicon, enabling potentially large performance gains
to be realized.

Note that a hardware design often realizes some
degree of low-level parallelism, with the consequent
speed-up that such parallelism entails. But often this
parallelism is limited to some specific type of compu-
tation. For example, a microprocessor realizes parallel
computations of 32 bits, but each package of 32 bits
is treated sequentially, and so large-scale gains from
such parallelism are limited. Because of this, efforts to
develop general-purpose parallel computers have gen-
erally failed to live up to their expectations and hopes
for them have met with disappointment. Not so disap-
pointing, however, has been the fate of more special-
purpose endeavors. Here the design has been tailored
to the specific computation that the parallel realiza-
tion “is good at”. Image-processing, for instance, can
take advantage of large-scale parallel implementations
that have been designed for a specific set of compu-
tations. ASICs, therefore, often offer the opportunity

of achieving parallelism for specific applications for
which they have been custom-designed. In this way,
“distributed parallelism” can gradually be introduced
to computer applications on a case-by-case basis.

Shifting functionality from software to hardware,
however, need not automatically entail a performance
enhancement. The movement of certain processor
functions back into software, for example, has enabled
RISC processor technology to realize significant per-
formance gains. So what needs to be emphasized is
that the allocation of functionality into hardware and
software is no longer as obvious and straightforward as
it once was and that each application area requires a
separate analysis concerning the optimal distribution
of such functionality.

1.3 CoDesign

With improvements in computer-aided design making
the boundary between hardware and software fuzzier
and more problematic all the time, it is becoming
clearly advantageous to have a more flexible design
style — one in which both the hardware and software
design options can be considered together. However,
current hardware and software design methodologies
have their differences, and careful thought must be
given as to how to combine them. Admittedly, in both
the ASIC and custom-chip styles of hardware design,
an enabling feature has been the greater use of design
abstraction (such as the use of standard cell libraries
and behavioral level abstractions) in order to deal with
increasing design sizes and orders of complexity. And
software engineering too makes use of the notion of
design abstraction — which means that both the hard-
ware and software engineering disciplines have now
developed tools and methods to deal with design ab-
straction hierarchies. Nevertheless, because of the
traditional separation of the hardware and software
development processes, the notational representation
and modeling schemes that have been developed so far
have been specific to the needs of either hardware or
software engineers, and so it is not a simple matter to
merge them. Here is the view of one designer:

From other aspects, software design and silicon
design exhibit almost a duality principle. If we
take an abstract view of work performed inside
computing systems, then some of the work is
communication of data and some of the work is
computation on the data. To oversimplify a bit,
software design focuses on computation while
VLSI design focuses on communication....Simply
stated, software views processor cycles as the
limiting factor and tries to make best use of
the sequence of instruction cycles. VLSI design

views communication bandwidth as the limiting
factor and tries to make best use of the sequence
of data operands. [16, p. 862]

In order to develop systems in the present age,
where hardware and software trade-offs can be exam-
ined on a case-by-case basis, a new, unified approach
is then needed that will comprise both the hardware
and software points of view. The ideal way to go
about developing a new system design should then
be to start with an abstract notation such that each
component or module is independent of its final real-
ization in hardware or software. The partitioning be-
tween hardware and software, using such a codesign
approach, could consequently be made in the most ap-
propriate manner and not, as is the current customary
practice, according to conventional wisdom. A recent
textbook on software engineering makes note of this
same idea:

As the cost of special-purpose integrated cir-
cuits decreases and the speed of fabrication in-
creases (for simple circuits, it is now possible to
go from an idea to a delivered microchip in a few
weeks), the borderline between hardware and
software components is blurring. It is becom-
ing increasingly cost-effective to delay decisions
about which functions should be implemented
in hardware and which functions should be soft-
ware components. [30, p. 182-183]

What is important in the design process is to
delay hardware/software partitioning as late as
possible in the design process, and this implies
that the system architecture must be made up
of stand-alone components which can be imple-
mented in either hardware or software. [30, p.
182-183)

Inasmuch as codesign systems are usually of a com-
plex nature, they can be difficult and time-consuming
to design. Further, as discussed in [11], the major-
ity of product production costs are determined during
design. And clearly the time consumed for the design
of such systems can be even more critical: a widely
quoted study ([25], cited in [4]) states that a six month
delay in product release was more damaging to prof-
itability than a 50 per cent cost overrun during the
product design cycle.

However progress in the codesign area is only in the
initial stages, particularly with respect to upstream
approaches, and there is much to be done in order to
realize the full benefits from this approach.

1.4 CoDesign and System Reliability

So far we have made little mention of system relia-
bility, the third category important to design. This
is a consideration whose importance grows with the
increasing complexity of computer system designs:

As computer applications become more diverse
and pervade almost every area of everyday life,
it is becoming more and more apparent that the
most important dynamic characteristic of com-
puter software is that it should be reliable. [30,

p. 16]

Computer system professionals are increasingly in-
volved these days with the development of “reactive”
systems [15, 24], which continually interact with hu-
mans and their environment. Typical examples in-
clude telephones, automobiles, communication net-
works, computer operating systems, avionics systems,
etc [14, p. 2]. These systems comprise components
from

e hardware
e software

e users and objects from the real world

In order to design and understand such systems, it
is necessary to model all of three components in an
integrated and consistent manner:

Progress in developing software systems requires
a fundamental appreciation that those systems
are more than just a collection of parts and that
software is embedded in larger systems with a va-
riety of physical components: design of such sys-
tems must deal with both of these issues. Design
of software systems must also take into account
the fact that the whole system includes people
as well as hardware, software, and a wide variety
of material elements.[6, p. 283]

In order to develop robust and reliable complex sys-
tems, it will be necessary, as is the case in all engi-
neering and scientific disciplines, to develop and ap-
ply formal mathematical methods wherever possible.
Progress has been made in this area, but much remains
to be done. In many respects practical advances in
this area will be delayed until improved modeling and
specification methods are available. Atsushi Takahara
from NTT, Japan, commenting on formal verification
techniques, observed:

In higher level systems, we will have to think
much more about the specification method than

the theoretical techniques if such techniques are
to be useful. The most pressing problem is how
to express what we want to make. In fact, that is
the problem. And in all the formal verification
systems we've discussed today, everybody has
assumed that we have a correct specification for
verification. We should think much more about
how to construct a language to express that spec-
ification, including the semantics and the syntax.

(32]

While the goal of attaining provably correct com-
puting systems may be extremely difficult to attain,
serious efforts in the direction of greater computer sys-
tem reliability, particularly for systems critical to hu-
man life and property, must be made on systems cur-
rently being designed. In the end, it will be necessary
to provide a more rigorous and unified approach to
system modeling and specification, covering all three
of the above listed system components. However,
advances can only be expected to take place incre-
mentally, and the place to begin this process is one
where significant gains can be realized in the near-
term: merging the hardware and software modeling
domains. For this reason advances in the area of hard-
ware/software codesign can be expected to lie along
the path towards greater complex system reliability.

1.5 Concurrent Engineering and Sys-
tem Engineering

The goal of providing a more uniform framework for
the design of systems has a general appeal, of course,
and the idea has been presented in a number of quar-
ters. For example, efforts to come to grips with
the problems associated with the increasingly com-
plex nature of product design has led to attempts to
bring about a tighter integration of its various phases,
known as “concurrent engineering”. One characteri-
zation of concurrent engineering (CE) asserts that it

...promotes a freer interchange of information
between multiple engineering disciplines such as
testing, manufacturing, reliability, maintainabil-
ity, and all other disciplines that can contribute
to making a better product. [11]

The accepted formal definition of CE defines it as
A systematic approach to the integrated, con-
current design of products and their related pro-

cesses, including manufacture and support. [34]

Now with such a general prescription, CE can be
thought to encompass almost all aspects of systems

design, including hardware/software codesign. How-
ever, most references to concurrent engineering to date
have centered on considering traditionally serial issues
(e.g. design, test, manufacture) concurrently. Code-
sign, as we are outlining it here, attempts to better
integrate two concurrent activities, namely the design
of the hardware and software components of a system.
Consequently, we view codesign as one aspect of future
concurrent engineering capabilities and environments.

1.6 Who are the Codesigners?

What kinds of systems involve hardware/software
codesign? We’ve already mentioned some exam-
ple “reactive” systems. These are complex systems
with hardware and software components that are con-
stantly in execution, that is, reacting to their envi-
ronment. The Boeing 767 airplane, for example, can
be viewed in these terms. Although one’s immedi-
ate picture of a 767 might be that of a large piece
of hardware, one should also be aware that there are
also about 5 million lines of software code [21] associ-
ated with that “system”. This simply reflects the fact
that to an increasing degree, many engineered sys-
tems, from automobiles to video cameras to aircraft,
contain an integrated mix of software and hardware.
Some other categories to consider are

e embedded systems
e transaction systems
e systems with high performance requirements

e “smart” I/O components, such as image proces-
sors, speech recognition components, etc.

e special-purpose computational elements, such as
those involving neural networks and analog de-
vices

In fact, many of the systems to be designed in the
coming years will have the character of codesigns. As
Elliott Organick observed,

Microelectronics technology has advanced so
rapidly and been so successful that we are now
having to build large systems with a multitude
of diverse, interacting components. Some com-
ponents of these systems exhibit distinct archi-
tectures and may, in fact, be implemented fol-
lowing different choices of data abstraction real-
ized in a variety of logic and circuit technologies.
When we as designers understand how to build
such systems, we are no longer just software en-
gineers of just hardware engineers — we become

“heterosystems” engineers, a more accomplished
breed of engineering professional concerned with
building systems that are truly heterogeneous in
the fullest sense. [23, p. 31]

And Alfred Hartmann echoes this sentiment:

The shifting boundaries of suitability between
the two implementation alternatives [hardware
and software] may require competent systems
designers to be “bilingual”, conversant in both
design styles as the application warrants. [16, p.
873)

It is our contention that codesign is somewhere in
the future of everyone involved with computer system
design. In the following sections specific issues with
respect to codesign are discussed in more detail.

2 Issues in CoDesign

Current system development methods [2, 7] specify se-
ries of steps from system requirements capture to final
integration and test. While these steps may be iter-
atively encountered (i.e. design activity may regress
to previous steps in the sequence), they do not cap-
ture the concurrent character of many real design ac-
tivities. An alternative model of the design process is
one in which the refinement of requirements, specifica-
tion, design, implementation, and verification occurs
concurrently, with progress made opportunistically or
via a least commitment or delayed commitment [33]
strategy (see Figure 1). Such designs often appear to
have followed a serial design method upon completion
by producing the appropriate, consistent documents
for the individual design steps.

Figure 1: Concurrent Design Model

Systems whose implementation will be expressed in
hardware and software exacerbate the problem of a
serial development method in that the decisions made
in the hardware or software design activity can have
significant impact upon or reliance upon decisions in
the complementary domain (software or hardware, re-
spectively). This situation is best understood in ex-
amining the system development method given in [7]
and shown in Figure 2.

Design issues and decisions that can cause the devel-
opment process to regress to a previous step in one do-
main may also require a similar regression in the com-
plementary domain. The system engineering activity
has been created to address exactly such issues. How-
ever, the analysis and models created during system
engineering are not carried through the design pro-
cess and refined as the design progresses. Addition-
ally, improvements in hardware implementation tech-
nology and design tools and methods have changed
the economics of what should and can be implemented
as hardware in a cost effective manner. Hence, the
task of the system engineer is becoming more diffi-
cult, and requires better means for evaluating alter-
native architectures and allocations of function into
hardware and software with respect to product perfor-
mance, non-recurring (development) costs, recurring
(manufacturing) costs, test, reliability, maintenance,
and evolution.

Specific issues in codesign are presented in subse-
quent sections. Some of these issue are generic to the
design process, but are addressed in the codesign con-
text as we feel they are currently unaddressed in a
generic context and hence for codesign in particular.

2.1 Requirements

The issue of requirements capture and elaboration
is important for all design domains including hard-
ware/software codesign. Requirements elaboration is
an excellent example of the utility of the concurrent
design model. Some aspects of a product design re-
quire that some non-trivial effort in specification, de-
sign, or even implementation be expended in order
to understand the requirements. The user-interface
(hardware or software) of a product often requires
some form of prototype that can be examined and ex-
perimented with before precise requirements can be
formulated for that interface [3]. The plausibility-
driven design method [17] recognizes the need for elab-
orating requirements during specifications and design,
as opposed to a strictly serial approach (requirements
capture, specification, design). The point to be made
here is not that it is impossible to capture all require-

Hardware (HWCT)
Development tailed
engn

limi
pai
:m-n

I'IIJW are ad’““

Salysia
Sysiem (SRR SDR @") CDR
Concepits

LS.

Analyais oltware

Andlysis

Br:l Ili ‘I: inary

\

Software (CSCI)
Development

T~

Yerhe

l:{t? Eration

B
etpiled
\ e3gn E‘Mi“"
nit

n C
tegration

Folina

ll——— D

\J Y
Functional Allocated
Buacline Baseline

ntal C

Product
Baseline

Figure 2: System Development Method, DoD-STD-2167

ments before starting specification or design efforts,
but that such capture is not always possible and de-
sign methods should better support such design cases.
In fact, capturing all product requirements as the ini-
tial stage of product development is preferred in that
it restricts the space of possible designs for the prod-
uct and hence makes specification, design, implemen-
tation, and verification efforts more straightforward.

In addition to the capture and elaboration of re-
quirements, it is important to integrate the consider-
ation of these requirements into subsequent activities
in the development process, particularly when verify-
ing that requirements have been met. From the point
of view of codesign, conformance to product require-
ments will necessarily require the specification, design,
or implementation to be evaluated with respect to re-
alization in and trade-offs between hardware and soft-
ware. This theme of integration of product informa-
tion occurs throughout the individual issues cited in
this section, and hence is summarized as the final is-
sue.

2.2 Model Continuity

An important tool used in system engineering and
high level architectural exploration is the development
and evaluation of models. This evaluation sometimes
occurs as a thought or paper experiment, but more
frequently is occurring as formal analysis and com-
puter simulation of the models. Such models provide

a design expression that can be input to estimators
(e.g. development or manufacturing costs) and to sim-
ulators that most often examine performance issues.
However, these models and the associated system level
analysis are rarely carried forward through the design
process.

Upon interviewing designers, we have noticed that
two specific problems are commonly expressed about
modeling. First, in some cases it can be as time con-
suming to develop a meaningful model as it is to design
and implement a prototype. Analysis of the prototype
can often give more accurate information on cost, per-
formance, and other aspects of the design. Second, in
cases where models have been developed and analyzed,
they are often discarded once the analysis is completed
and are not revisited in the remainder of the develop-
ment process. One reason for this is that maintain-
ing the model to conform with subsequent architec-
tural and design decisions requires additional effort
with apparently little or no return. We feel that the
first issue, namely the difficulty of developing architec-
tural or high level models, is beginning to be addressed
by various research centers in industry and academia
[5, 12, 13, 19, 26, 27, 28, 29]. However, the second is-
sue, namely maintaining conformance of such models
and utilizing them throughout the development pro-
cess, is not currently being addressed by commercial
offerings or in the research community. In particular,
the connection between system level models, designs,
and implementations are not maintained to the degree

needed to support 1) projection of high level architec-
tural rationale into detailed design decision making
and 2) reflection of detailed cost, performance, reli-
ability, test, and maintenance information back into
higher level (architectural) descriptions. We call this
the model continuity problem, and it is another in-
stance of the need to integrate product information
throughout the development process.

The projection of system level analysis throughout
product development is relevant even in those design
activities in which function allocation between hard-
ware and software is straightforward. In this case, it
is still important and beneficial to evaluate trade-offs
in one domain or the other (i.e. the hardware or the
software domain) with respect to the total system de-
sign, considering the consequences for both hardware
and software. It is sometimes the case in joint hard-
ware and software development projects that signifi-
cant software design activity is delayed until such time
as a working hardware prototype is available [18, 20].
In such cases, the software design and implementation
often becomes the critical path to product introduc-
tion. If models of the hardware design can be con-
structed and then executed in conjunction with soft-
ware, the software design and implementation can be-
gin earlier in the development cycle, thereby shorten-
ing the product’s time-to-market.

2.3 Metrics

The purpose of developing system models is to evalu-
ate these models with respect to product requirements
and goals, such as performance, cost, and reliability.
It is important to have metrics 1) to express these
product requirements and goals and 2) to measure
and compare design alternatives. Identification and
application of metrics is currently a problem indepen-
dently in the hardware and software design domains,
as stated in [8]:

As a design evolves in a top-down approach, a
direct relationship in terms of parameters and
metrics between the hierarchical levels typically
is not generated. The formal data consists only
of block and flow diagrams and a set of require-
ments. Modeling and analyses rarely cross the
hierarchical levels. ... Another aspect of this
problem is that there are few metrics established
to relate multiple levels of a design. Many char-
acteristics at the high levels lack meaningful or
complete metrics. For example, few metrics exist
for reliability at the conceptual level, and no gen-
eral method exists for relating reliability charac-
teristics between hierarchical levels.

For system models that will eventually be realized in
a combination of hardware and software, these metrics
must be relevant to both hardware and software real-
izations of system functions. Since system level mod-
els are abstractions of implementation, estimators for
the metrics of interest are required to evaluate system
models.

In addition to metrics about the product, it is inter-
esting to develop metrics for designed products (e.g.
product quality) and for the design process itself. Met-
rics of the design process allow the contribution of
codesign tools to be evaluated. For example, it is
valuable to measure the impact of tools and design
methods on the productivity of a product develop-
ment organization.

2.4 Requirements Verification

The discussion of codesign issues opened with require-
ments capture and elaboration, and here we return
to the topic of requirements from the perspective of
verifying that an architecture or design meets these
requirements. Requirements verification techniques
range from simple observation to simulation to for-
mal proofs of conformance. As more rigorous verifi-
cation methods are employed, the associated require-
ments necessarily become more formal. Formal ex-
pression of requirements is intimately related to the
selection of the metrics in which the requirements are
expressed. Clearly the expression of requirements, the
expression and evaluation of models and designs, and
metrics are critical to achieve requirements verifica-
tion. Here again, the integration of product informa-
tion is needed.

2.5 Product Data Model

The issues described to this point are interrelated in
one aspect or another, and highlight the need for
the collection of and access to information about the
development of a product. This database of prod-
uct information can support product related activities
throughout the life-cycle of the product, and can also
contribute to the development activities of other prod-
ucts. For example, a product database can provide
information on design and design rationale so that as-
pects of a product design can be reused in subsequent
design activities.

To understand the information requirements of such
a product database, it is important to develop a
data model that expresses the logical content of the
database and the relationships between items in the
database. Such a data model can also be used in an

operational sense, providing a data abstraction whose
implementation may be changed without impacting
applications that access the database, and allowing
the automatic generation of associated interface or ac-
cess routines.

3 A Look to the Future

A system-level design methodology will be an
important enabling factor in producing the elec-
tronic product designs of the future. Equally
important, CAD tools and services that sup-
port the system-level design methodology must
be produced. ... Fourth-generation CAD sys-
tems will differ from today’s tools in that they
will support system design, including hardware,
software, and packaging. [31]

In the design environment of the year 2000, sepa-
rate hardware and software islands will no longer
exist. Applications of all sorts will be bonded to-
gether by a “software glue,” which will unite di-
verse areas of interest and intertwine them inex-
tricably. The process of design itself will be em-
bodied in the system. And today’s software en-
gineer will become tomorrow’s system designer.

(1]

Commercial offerings and some university research
to date [10, 12, 13, 19, 22, 26, 27, 28, 29] have pri-
marily focused on the evaluation of system perfor-
mance across alternate hardware/software configura-
tions. Certainly performance is one important consid-
eration when evaluating function allocation trade-offs
between hardware and software, and these systems
represent the initial steps toward codesign support.
However, in the broad context of codesign, where sys-
tem reliability and time-to-market are viewed together
with performance, a larger theme emerges: that of
of integrating information across the various stages
of the product life-cycle and across the domains of
hardware and software. The long term image of this
theme is a “unified product model” that is realized in
an electronic form accessible to tools and interested
parties involved with a product throughout the prod-
uct life-cycle. In addition to information about prod-
ucts, knowledge about the processes of product con-
ception, development, manufacture, and support as
well as knowledge about the organizations which exe-
cute these processes can be represented and utilized in
the endeavor of “enterprise engineering”. Doug Engle-
bart [9] characterizes such integrated, electronic rep-
resentation of information, associated tools for inter-
acting with this information, and collaboration capa-
bilities among widely distributed knowledge workers

as key to “boosting the knowledge work of organiza-
tions”.

Given such a base of knowledge and information,
appropriate tools, environments, and interfaces for ac-
cessing and examining this information will leverage
most all of the activities undertaken by an organiza-
tion, from top management levels to individual con-
tributors.

The investigation of codesign research issues is a
next logical step toward these longer term goals, build-
ing on previous and current research in the areas of
computer aided engineering in the design domains of
software and hardware.

References

(1] Laszlo A. Belady, in MCC Software Technology
Program (brochure), 1990.

(2] Barry W. Boehm, “A Spiral Model of Software
Development and Enhancement”, in Computer,
Vol. 21, No. 5 (May 1988), pp. 61-72.

[3] Frederick P. Brooks, Jr., “No Silver Bullet: Es-
sence and Accidents of Software Engineering”, in
IEEE Computer, Vol. 20, No. 4 (April 1987), pp.
10-19.

[4] Ralph K. Cavin, III, Jeffery L. Hilbert, “Design of
Integrated Circuits: Directions and Challenges”,
in Proceedings of the IEEE, Vol. 78, No. 2 (Febru-
ary 1990), pp. 418-435.

[5] K. M. Chandy, J. Misra, Parallel Program De-
sign, Reading, Massachusetts: Addison-Wesley,
1989.

[6] Computer Science and Technology Board, “Scal-
ing Up: A Research Agenda for Software Engi-
neering”, in Communications of the ACM, Vol.
33, No. 3 (March 1990), pp. 281-293.

[7] DoD-STD-2167

[8] “Evaluating Design Process Problems”, in Elec-
tronic Engineering Times, pp. 34-38, July 16,
1990

[9] Douglas C. Englebart, “Bootstrapping Organiza-
tions into the 21** Century”, SIGCHI presenta-
tion, May 15, 1990, Austin, TX.

[10] Gerald Estrin, Robert S. Fenchel, Rami R. Ra-
zouk, Mary K. Vernon, “SARA (System ARchi-
tects Apprentice): Modeling, Analysis, and Sim-
ulation Support for Design of Concurrent Sys-

tems”, in JEEE Transaclions on Sofiware Engi-
neering, Vol. SE-12, No. 2 (February 1986), pp.
293-311.

[11] Stephan Evanczuk, “Concurrent Engineering:
The New Look of Design”, in High Performance
Systems, April 1990.

[12] Foresight Product Description, Athena Systems
Incorporated, March 1989.

[13] Geoffrey A. Frank, Deborah L. Franke, William
F. Ingogly, “An Architecture Design and Assess-
ment System”, in VLSI Design, August 1985, pp.
30-38.

[14] David Harel, “Statecharts: A Visual Approach to
Complex Systems”, MCC Technical Report STP-
107-86a, February 1986.

[15] David Harel, “On Visual Formalisms”, in Com-
munications of the ACM, Vol. 31, No. 5 (May
1988), pp. 514-530.

[16] Alfred C. Hartmann, “Software or Silicon? The
Designer’s Option”, in Proceedings of the IEEE,
Vol. 74, No. 6 (June 1986), pp. 861-874.

[17] Alan R. Hooton, Ulises Agiiero, Subrata Das-
gupta, “An Exercise in Plausibility-Driven De-
sign”, in Computer, Vol. 21, No. 7 (July 1988),
pp- 21-31.

[18] Shankerappa Hulsoor, personal communication.

[19] Integraied Design Automation System IDAS
Product Description Summary, JRS Research
Laboratories, Inc., June 1988.

[20] Andrew Kern, Al Blazevicius “A Concurrent
Hardware and Software Design Environment”, in
VLSI Systems Design, August 1988, pp. 34-40.

[21] Geoffrey McIntyre, FAA, “MacNeil/Lehrer News
Hour” (interview) 21 February 1990.

[22] Richard Nass, “Develop Hardware and Software
Simultaneously in One Environment”, in Flec-
tronic Design, October 26, 1989, p. 137.

[23] E. L. Organick, T. M. Carter, M. P. Maloney, A.
Davis, A. B. Hayes, D. Klass, G. Lindstrom, B. E.
Nelson, K. F. Smith, “Transforming an Ada Pro-
gram Unit to Silicon and Verifying Its Behavior
in an Ada Environment: A First Experiment”, in
IEEE Software, Vol. 1, No. 1 (January 1984), pp.
31-49.

[24] A. Pnueli, “Applications of Temporal Logic to
the Specification and Verification of Reactive Sys-
tems: A Survey of Current Trends”, in Curreni
Trends in Concurrency, J. W, de Bakker et al.
(eds), Lecture Notes in Computer Science, Vol.
224, Springer-Verlag, New York, 1986.

[25] D. G. Reinersten, “Whodunit? The Search for
the New-Product Killers”, McKinsey & Com-
pany, New York, July 1983.

[26] Gruia-Catalin Roman, Mishell J. Stucki, William
E. Ball, Will D. Gillett, “A Total System Design
Framework”, in JEEE Computer, Vol. 15, No. 5
(May 1984), pp. 15-26.

[27] “SES/workbenchTM: A Multilevel Design Envi-
ronment for Modeling and Evaluation of Com-
plex Systems”, Scientific and Engineering Soft-
ware, Inc., May 1989.

[28] V. Shen, C. Richter, M. Graf, J. Brumfield,
“VERDI: A Visual Environment for Designing
Distributed Systems”, J. Parallel Distrib. Comp.,
9 (1990), pp. 128-137.

[29] Connie U. Smith, John L. Cuadrado, Geoffrey
A. Frank, “An Architecture Design and Assess-
ment System for Software/Hardware Codesign”,
in Proceedings of the 22™¢ Design Automation
Conference, Las Vegas, June 1985, pp. 417-424.

[30] Ian Sommerville, Software Engineering, Third
Edition, Addison-Wesley, Workingham, England.

[31] Jerry Sullivan, “Toward Fourth-Generation De-
sign Automation Tools”, in Electronic Engineer-
ing Times, January 29, 1990.

[32] Atsushi Takahara, “A D&T Roundtable - Formal
Verification: Is It Practical for Real-World De-
sign?” Carl Pixley (moderator), in JEEE Design
& Test of Computers, Vol. 6, No. 6 (December
1989), pp. 50-58.

[33] Harold Thimbleby, “Delaying Commitment”, in
IEEE Software, Vol. 5, No. 3 (May 1988), pp.
78-86.

[34] Robert I. Winner, et al., “The Role of Concur-
rent Engineering in Weapons System Acquisi-
tion”, TDA Report R-338, IDA, Alexandria, VA.
Also Defense Technical Information Center re-
port AD-A203-615.

