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Imbedding Rule Inferencing
in Applications
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Many opportunities exist to integrate rule-based
problem solving with “conventional” application code.
For example, rule-based implementations of consistency
and completeness checking, style and method critics, or
data querying can enhance applications and, at the same
time, provide an easily extensible (checking, critic, or
query) facility. However, the preferred languages for ap-
plications and for rule-based problem solvers present a
barrier to their integration and, consequently, a barrier to
the widespread use of rule-based problem solvers embed-
ded in applications.

The current scenarios used to achieve this integration
are (1) to write the application in the rule language, or (2)
to transfer (and hence translate) relevant data between the
application and the rule-based problem solver. This ar-
ticle describes how features of object-oriented languages
can facilitate the integration of rule inferencing and appli-
cation code. The inferencing capability can remain gen-
eral rather than application specific, and the application
code requires only minor changes to accommodate the
inference engine. The domain of electrical CAD consti-
tutes our example application area,

Numerous applications of rule-based problem solving
exist in the electrical CAD domain.! Researchers and

commercial developers have implemented rule-based
design critics that examine aspects of circuit design — for
example, testability or adherence to electric or logic
design rules. However, a barrier hinders further realizing
the utility of rule-based problem solving in CAD tools.
This barrier arises from the goal to create CAD tools with
maximum performance. Often, this goal has been realized
by implementing these tools in C or C++,> with data
structures optimized for size (that is, as small as possible)
and for tool operations. For example, the data organiza-
tion most suitable for schematic capture or circuit display
may not be the most suitable for simulation or timing
analysis. This barrier has impeded the use of rule-based
techniques in CAD tools.

To apply rule-based problem solving to CAD prob-
lems, the tool must be implemented in the rule language
(for example, Prolog,’ Proteus,* or OPS5°), or the design
representation must be translated first from the tool repre-
sentation to the rule language and subsequently back into
the tool representation (if the rule-based problem solver
modifies the design in any way). Consequently, rule-
based problem solvers occur as independent steps in the
design process, as opposed to being integrated in existing
design activities (in schematic capture, for instance).
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The CAD Inference Engine (CADIE) implements a
rule-inferencing capability intended to be embedded in
CAD tools. The primary motivation behind CADIE is the
ability to tightly integrate a rule-based inferencing capa-
bility with CAD tools developed in an object-oriented
language, specifically C++. CADIE examines tool data
directly, thereby avoiding translations and enabling the
rule-based problem solver to be integrated into a tool that
supports an existing design activity. CADIE accom-
plishes this access without additional data fields in tool-
defined data structures. The program achieves integration
via features of object-oriented languages that (1) enable
the inference engine to remain application independent,
and (2) require only minor changes to application code
and data structure definitions. This article describes the
object-oriented design of the inference engine and the
interface between the inference engine and tool-defined
data structures.

Rules and assertions

An assertion represents (“asserts’) a fact to be consid-
ered during inferencing. While assertions sometimes
represent other information (for example, how to destruc-
ture information represented as a list, or the termination
condition of a recursive rule), the primary role of asser-
tions is representing facts. For example, the assertions in
Figure 1 state that a signal clock and a transition ¢/ exist.
Further, ¢t/ represents a transition of clock at time 110 to
the value 1. CADIE uses a rule and assertion syntax
adopted from Proteus.*

A forward rule specifies facts to add to the database
when a set of preconditions becomes true. For example,
the forward rule

((data ?d)

(clock ?c)

(connected ?d ?c)

e

(connection-error ?d ?c))

states, “If a data signal and a clock signal are connected,
then add to the database the fact that a connection error
exists between these two signals.” The syntax ?x speci-
fies a variable.

A backward rule specifies a set of conditions that, if
proved true, support the truth of its predicate (conse-
quent). For example, the backward rule

((signal-value ?signal ?time ?value)
<—

(transition ’t)

(signal ?t ’signal)

(time 7t ’time)

(value ?t ?value))

(signal clock)
(transition t1)
(signal t1 clock)
(time t1 110)
(value t1 1)

Figure 1. Example assertions.

states that a signal value and the associated transition time
can be determined from a transition involving that signal.

CADIE’s unique feature lies in its integration of tool
data structures with rules and assertions. The object-
centered representation of tool data is simply an alterna-
tive organization for information that can be expressed as
assertions.® Knowledge representation systems often
employ the frame representation paradigm, integrated
with rules and assertions. The term frame is not used here,
since explicit frame representations usually include uni-
form inference mechanisms (for example, inheritance).
While implicit inference mechanisms can be provided in
tool data implementations, they need not be uniform
across all tool data structures and will be hidden (via data
abstraction) from the inferencing mechanism of CADIE.

Consider a tool data structure for a signal transition
with data members signal, time, and value (the sidebar at
the end of this article defines C++ terminology). Consider
a specific instance of the transition data structure, 1/, with
these data member values:

signal: <clockl>
time: 110
value: 1

If represented explicitly by CADIE, this data would be
expressed by the assertions in Figure 1. CADIE enables
the tool-defined data structure (presumably optimized for
tool use) to be considered in inferencing without trans-
lating the data into the assertion format.

An object-oriented implementation

To understand the integration technique, we first de-
scribe the main concepts of the inference engine design. In
examining an object-oriented design, one must consider
the (conceptual) objects of the discourse, or the ontology;
the objects of the implementation expressed in an object
language; and the operations supported by those objects.

The first obvious conceptual objects are rules and
assertions, and a database in which they reside. In decom-
posing these objects, we need to describe predicates
(known as structures in Prolog), constants, and variables.
We also define several specializations of constant, includ-
ing symbol, string, and integer. In addition to these ob-
jects, which capture static concepts, we add the object
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Figure 2. The CADIE class hierarchy.

While candidates (rules and assertions) remain in the database
1. Attempt unification of the goal predicate with the next candidate (via the member function cadie_Unify)
2. If unification is successful and the candidate is an assertion
—Return variable bindings and report success
3. If unification is successful and the candidate is a rule
—Recursively process subgoals (backward-rule antecedents)
—If all subgoals are proved, return variable bindings and report success

Figure 3. The basic goal-proving algorithm.

class tool_Transition : public cadie_Tool_Object {
tool_Signal *signal;

int time;
int value;
public:

/* Tool-defined member functions ... */

virtual char **cadie_One_Place_Predicate_Names();
virtual char **cadie_Two_Place_Predicate_Names();
virtual int

2

cadie_Unify_Two_Place_Predicate(cadie_Object*, cadie_Substitution*, int);

Figure 4. An augmented class definition.

goal, which represents both a top-level goal or query and
the intermediate goals (subgoals) developed in satisfying
that top-level goal. Figure 2 shows the class hierarchy
defined for these objects in the CADIE implementation.
Class names in the code examples use these names with
the prefix cadie. In this implementation, the objects ex-
pressed in the object language represent one-for-one the
conceptual objects described above.

In the context of this class hierarchy, we define func-
tions required to implement the inference engine. For
example, the function cadie_Unify is declared for class
Unification_Object, and class-specific definitions of this
function occur in each class derived from this class.
Figure 2 also presents several other functions of CADIE.

With these objects and functions, we can now define
the basic algorithm for satisfying a goal via backward

chaining. The algorithm shown in Figure 3 has been
simplified to facilitate understanding how integration
occurs, and is not the complete algorithm used in the
CADIE implementation.

With respect to integrating instances of tool-defined
objects with the inference engine, the interesting step of
the algorithm to examine is step (1). A unification candi-
date (a rule, an assertion, or a tool-defined object) must
support unification. Further, a unification candidate must
be able to create invocations of itself, since it may be used
more than once in proving a goal. (An invocation com-
prises a reference to the unification candidate and associ-
ated variable bindings that result from unification). For a
tool-defined object, CADIE accomplishes this by provid-
ing the class Tool_Object. The tool developer includes
this class in the class definitions of the tool-specific
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Figure 5. A class hierarchy with tool support classes.

objects that are of interest in the rule-inferencing applica-
tion. That is to say, the tool-specific class is derived from
the CADIE-supplied class Tool_Object. This derivation
can be at the base of the tool’s class hierarchy, or intro-
duced at some intermediate level of the tool’s class hier-
archy via multiple inheritance. Figure 4 illustrates an
example derivation of a tool-defined class from the
CADIE-supplied class.

Object/inference-engine integration

To integrate tool-defined objects with CADIE, we add
the classes Tool_Object and Tool_Invocation_Object to
the class hierarchy as shown in Figure 5. These classes
define member functions required by the inference en-
gine, thereby providing transparent access to tool-defined
classes derived from Tool_Object. These classes enable
the inference engine to access tool-defined objects as if
they were expressed as assertions. This interface or proto-
col definition capability, along with object-type-specific
function invocation, constitute the essential features of an
object-oriented language that enable the integration de-
scribed here. In the context of object-oriented program-
ming, the ability of different objects to respond to the
same interface (protocol) is called polymorphism.”
CADIE’s object-oriented-protocol approach is similar in
spirit to the “protocol of inference” approach in Joshua,?
although CADIE does not attempt to span the same range
of operations.

The object/inference-engine interface. To support
unification, the Tool_Invocation_Object class redefines
the function cadie_Unify. Class-specific behavior for the
cadie_Unify function is achieved via the following vir-
tual-member functions declared by the class Tool_Object:

* cadie_One_Place_Predicate_Names
* cadie_Two_Place_Predicate_Names
* cadie_Unify_Two_Place_Predicate

These functions are utilized by the cadie_Unify
function of the class Tool_Invocation_Object, and class-
specific definitions of these functions occur in each tool-
defined class derived from class Tool_Object. The first
two functions define the predicate names that objects of
the derived class will recognize (that is, the predicates
with which they can potentially unify). One-place predi-
cates have the form

(<predicate-name> <object>)

where <predicate-name> is a type for <object>. Two-
place predicates have the form

(<predicate-name> <object> <value>)

where <predicate-name> is an attribute name of <object>,
whose value is <value>. Unification of a tool-defined
object with a one-place predicate is straightforward, and
verifies that

(1) The object recognizes the predicate name; and
(2) <object> is the specific tool-defined object, or a
variable to which the tool-defined object can be bound.

Unifying a tool-defined object with a two-place predicate
is also straightforward, requiring verification that

(1) The object recognizes the predicate name;

(2) <object> is the specific tool-defined object, or a
variable to which the tool-defined object can be bound;
and
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(tool_Transition

(transition)

((signal cadie_Object" ‘signal’)
(time integer ‘time’)

(value integer ‘value’)
)

Figure 6. tool_Transition predicate declarations.

(3) <value> matches the appropriate attribute value of
<object>, or is a variable to which the appropriate attrib-
ute value of <object> can be bound.

A class declaration example. Consider the tool class
tool_Transition representing a transition in simulation
output. The class definition. after being augmented with
information to be used by CADIE, is shown in Figure 4.

Possible predicate names for the rool_Transition class
are rransition for one-place predicates, and signal., time,
and value for two-place predicates. The value associated
with the predicates time and value would be integers
denoted by the corresponding members of the class in-
stance, The value of the predicate signal could be a ppinter
to an object representing a signal from which additional
information can be obtained, or possibly a string denoting
the signal’s name.

Inference engine commands. To complete the inte-
gration example, we need inferencing commands that the
tool can issue to initiate inference engine activity. Initiat-
ing inferencing can occur as aresult of an egplicit request
by the tool user, or an internal (implicit) action by the tool.
For example, a schematic-capture tool could provide
consistency and completeness checks once a design has
been entered. Atthe request of the designer, the tool could
verify that all ports of all components ar¢ connected to
signals or other ports, that clock signals are not cornected
to data signals. and that no direct connections exist from
power to ground. In addition to this explicitly initiated
checking. the tool could be performing implicit infer-
ences after each interaction with the user. For example, a
designer could specify constraints for the design, such as
total space available or maximum delay allowed. If a
constraint is violated at any point while the designer is
entering or modifying the design, the tool can notify the
designer at that point — rather than after the complete
design has been entered. A rule-based approach to con-
straint checking. as opposed to an algorithmic approach,
may be necessary for incomplete designs or for designs in
which component size or speed have not been completely
characterized.

To this end, CADIE defines the following functions:

» cadie_Load — Load the source file of tules and
assertions;

* cadie_Add_Object — Add atool-defined object (that
is. an assertion) to the database;
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* cadie_Make_Goal — Create a goal or query;

¢ cadie_Query — Search for the next solution of the
goal, via backward chaining; and

* cadie_Fire — Fire a forward rule.

Forward inferencing. When tool developers or users
introduce forward rules into the database, the forward-
rule antecedents are unified with assertions in the data-
base. Hence, any tool-defined objects in the database will
also be considered in forward inference. If CADIE can
satisfy all antecedents of a forward rule with consistent
variable bindings, the rule is “ready to fire.” All such rules
make up the conflict set, from which the tool can select
and fire specific rules. Firing a forward rule asserts all the
rule consequents into the database and removes the rule
from the conflict set.

When considering tool-defined objects in the context
of forward-rule consequents, a one-place consequent (that
is, apredicate) of a forward rule specifies a (possibly new)
type name for the corresponding object. Hence, if a

forward rule fires and has the consequent
w

(<type-name> <object>),

then <object> should now recognize one-place predicates
with the predicate name <type-name>. A two-place con-
sequent (a predicate) of a forward rule specifies a value
for the corresponding attribute of the object. Hence, if a
forward rule fires and has the consequent

(<predicate-name> <object> <value>),

this results in modifying the attribute denoted by <predi-
cate-name> of the object <object>. This requires addi-
tional functions to be supported by the tool-defined
classes, namely

» cadie_Apply_One_Place_Predicate
¢ cadie_Apply_Two_Place_Predicate

The implementation for a specific attribute dictates the
appropriate implementation of the function. For example,
the consequent

(time <transition-object> 100)

can result in setting 100 as the value of member time of
object <transition-object>, while the consequent

(signal <transition-object> “carry”)

can result in setting “carry” as the value of the name
member of the teool_Signal instance referenced in the
signal member of <transition-object>. This is a
consequence of the data abstraction capabilities of the
object language. Class- and attribute-specific code can
also handle multivalued attributes, enabling new attribute
values (asserted as the result of forward-rule firing) to be
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added to a set of values as opposed to
replacing a single value.

Forward rules can also specify ne-
gated consequents (predicates). For one-
place predicates, a negation can remove a
specified type name from the set of type
names recognized by the specific object.
For two-place predicates, a negation can
remove the specified value from the set
of values of the specific object’s attri-
bute, oritcanremove a single value of the
attribute. If the single value or the last
value of the set is removed, the object
will no longer unify with a two-place
predicate whose predicate name signifies
that attribute. For example, a tool main-
taining delay information on a circuit
under design might represent delay val-
ues as unknown (no value), an upper and
lower bound (a list or a pair of values), or
asingle value. If the circuitis modified so
that a previously estimated delay interval
is no longer valid, the corresponding
upper and lower bounds must be re-

moved, where the absence of a value in-_

dicates that the delay value is unknown.
A forward rule realizing this action might
resemble the following rule fragment:

(.
(delay ’path ?delay-value)
>

(~ (delay ’path ?delay-value)))

Additional member functions that handle negated

forward-rule consequents include

char *cadie_One_Place_Predicate_Names_For_tool_Transition[ ]=
{“transition,” NULL};

char *cadie_Two_Place_Predicate_Names_For_tool_Transition[ ]=
{“signal,” “time," “value,” NULL};

char *"tool_Transition::cadie_One_Place_Predicate_Names()
{ return cadie_One_Place_Predicate_Names_For_tool_Transition;}

char **tool_Transition::cadie_Two_Place_Predicate_Names()
{ return cadie_Two_Place_Predicate_Names_For_tool_Transition; }

int tool_Transition::cadie_Unify_Two_Place_Predicate(
cadie_Digested_Object *candidate,
cadie_Substitution *substitution,

int predicate_Index)

switch (predicate_Index) {
case 0: { /* signal */
cadie_Arbitrary_Object "cadie_Value_Of_Predicate_signal = signal;

if (cadie_Value_Of_Predicate_signal == NULL) return FALSE;

return candidate -> cadie_Unify(cadie_Value_Of_Predicate_signal,
substitution); }

case 1: {/* time */

cadie_Digested_Integer_Constant *cadie_Value_Of_Predicate_time;

cadie_Value_Of_Predicate_time = cadie_Make_Integer_Constant (time);

return candidate -> cadie_Unify(cadie_Value_Of_Predicate_time,
substitution); }

case 2: { /" value */

cadie_Digested_Integer_Constant "cadie_Value_Of_Predicate_value;

cadie_Value_Of_Predicate_value = cadie_Make_Integer_Constant (value);

return candidate -> cadie_Unify(cadie_Value_Of_Predicate_value,
substitution); }
}

}

Figure 7. The preprocessor output.

* For each two-place predicate name
— The type of value returned; and
— The expression that retrieves the value for
the attribute.

* cadie_Apply_Negated_One_Place_Predicate
* cadie_Apply_Negated_Two_Place_Predicate

Code generation

The tool and inference engine integration described to
this point requires tool developers to write the member
functions used by CADIE. To avoid errors and to ease the
requirements placed on developers, CADIE provides a
preprocessing utility that takes a concise description of
the predicates that a class instance recognizes and gener-
ates the appropriate C++ code. Developers can include
this code at the appropriate location in the tool code.

The preprocessor requires the following information:

* The class name:
¢ One-place predicate names;
* Two-place predicate names;

Consider the class tool_Transition in Figure 4. A pre-
processor input specification for this class is shown in
Figure 6, and Figure 7 presents the preprocessor output.

Suppose that the tool developer wanted to retrieve the
signal name and type via the transition object itself, as
opposed to retrieving the signal object and then extracting
the name and type. Figure 8 presents the preprocessor
input denoting this object description.

(tool_Transition
(transition device)
((signal cadie_Object* 'signal’)
(time integer ‘time’)
(value integer ‘value’)
(name string ‘'signal -> name')
(type symbol ‘signal -> type')
) :

Figure 8. Alternate fool_Transition predicate
declarations.
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T he integration approach provided in CADIE enables a
rule-inferencing capability that operates directly against
tool-defined data structures with no additional data fields
required in the tool-defined classes. The expense of
integration occurs in the number of member functions
associated with the tool-defined classes. This integration
capability encourages the use of rule-based problem solv-
ing in conventional applications that are implemented in
object-oriented languages, including C++. It does so by
overcoming performance and size penalties imposed by
alternative integration techniques such as translation.
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L]
C++ terminology

As is the case with many languages, C++ has language-
specific terminology for concepts that are known under
different names in other languages. The C++-specific
terminology for object-oriented concepts is described here
and is related to terminology used in other object-oriented
languages.

C++ uses the term class in the same manner as other
object languages — as a description or template for similar
objects. In C++, class specialization is called derivation,
with a derived class specializing a base class. The C++
derived class corresponds to the term subclass. C++ class
derivation provides single and multiple inheritance.

The C++ term data member refers to the data elements
of a class instance. or object. The C++ (data) member
corresponds to the instance variable, slot, or attribute term
used in other object languages. Class variables can be
defined in C++ and are called static data members. The
visibility of data members can be controlled in C++ code
by the specifications public, protected, and private.

A protocol is a set of messages (that is, an interface)
supported by one or more classes. Protocols for C++
classes are defined via member function declarations of
the classes. The C++ member function implementation
corresponds to a method, as defined in other object lan-
guages. As with data members, the visibility of member
functions can be specified as public, protected, or private.
To achieve class-specific implementation of a C++ mem-
ber function declaration (that is, a message), the member
function is declared as virtual. This class- specific behav-
ior of object-oriented languages is called polymorphism,
and is an essential feature of these languages. Declaring a
member function as virtual in a base class simply states to
the compiler that the details of the member function imple-
mentation may not be known until the compiler processes
classes derived from the base class. At runtime, the object
type determines the specific member function implemen-
tation to execute.
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