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Abstract

CADRES is a design knowledge representation system embedded in the V3 (LISP-based)
MCC CAD System. The goals of CADRES are 1) to represent design information in such a
way as to facilitate reuse of existing designs and design knowledge and 2) to facilitate reason-
ing and learning algorithms applied to design information. CADRES provides a framework
into which design knowledge is placed, and addresses the following issues: representing
design information for reuse; representing design information for reasoning algorithms; rep-
resenting design generalizations including parameterized design descriptions; searching the
space of existing design descriptions; representing constraints; and classifying new design
descriptions.

1 Introduction

With increasing complexity of VLSI architectures and implementations, it is advantageous to
reuse components of these architectures and implementations in subsequent designs. Reusing
such a design description is not limited to the structural description, and can include simulation,
timing, layout, and test information. While design descriptions are necessarily captured by all
CAD systems, these descriptions need to be classified in a manner which facilitates locating
these descriptions in subsequent design work.

CADRES is based on the KL-One system [Brachman, Schmolze 1985]. The KL-One rep-
resentation language was originally used to support a natural language understanding system.
We view the problem of representing design descriptions as similar to that of representing vo-
cabulary, in that we consider design descriptions to be terminological information (definitions
of ”concepts”, in KL-One). Once this network of definitional information has been established,
other types of knowledge can be associated with points in the resulting framework.

Given a knowledge base of classified designs and their generalizations, the iterative refine-
ment design model is easily supported. Starting with an abstract description of the design
(processor for example) obtained from the knowledge base, search procedures can identify the
refinements of the abstraction and its components contained in the knowledge base. These
refinements can be used "as is” or they can be the starting point for creating new designs. An
alternative source for the abstract design description is one which is entered explicitly by the
designer. In this scenario, the existing knowledge base of designs is viewed as a library of com-
ponents which can be used ”as-is”, or they can be used as the starting point for new component
designs. Finding appropriate designs in this scenario requires sufficient feature specifications
and search techniques.




As stated above, these design models can be supported ”given a knowledge base of classified
designs and their abstractions”. Hence, the significant problems in this approach are:

1. Classifying new design descriptions, and

2. Identifying and creating the appropriate design abstractions.
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Design abstractions are important in that they are what new designs are classified as "a
kind of”. Design abstractions are also one source of design plans, which can be reused.

2 Design Information in CADRES

CADRES is based on the KL-One system [Brachman, Schmolze 1985]. The KL-One represen-
tation language was originally used to support a natural language understanding system. We
view the problem of representing design descriptions as similar to that of representing vocab-
ulary, in that we consider design descriptions to be terminological information (definitions of
"concepts”, in KL-One). For the most part, we have adopted the terminology and graphic
representation of KL-One.

2.1 Concepts

The CADRES (KL-One) object which corresponds to a description is called a concept. Concepts
are organized into a structured inheritance network via a subsumption relation. Concept A is
said to subsume Concept B if all instances of Concept B are also instances of Concept A. There
are three important points to make here. First, concepts in CADRES are definitional. Second,
we are interested in representing abstract design descriptions, such as Concept A mentioned
above. Finally, the subsumption relation also expresses an inheritance relation among concepts.
Hence, once Concept A is said to subsume Concept B, Concept B then inherits the description
of Concept A.

Consider the (abstract) concept Processor, and the more concrete (but still abstract) concept
Processor-With-Cache which is subsumed by the concept Processor, diagrammed in Figure 1.
Processor elaborates the definitional aspects common to all processor designs, while Processor-
With-Cache elaborates the definitional aspects common to all processor designs which contain
one or more caches. Descriptive aspects of Processor are inherited by Processor-With-Cache,
and are not repeated in Processor-With-Cache.

The additional concepts Floating-Point-Processor and Floating-Point-Processor-With-Cache
can be added, with Floating-Point-Processor subsumed by Processor and Floating-Point-Proces-
sor-With-Cache subsumed by Floating-Point-Processor and Processor-With-Cache. Floating-
Point-Processor elaborates the definitional aspects of processor designs which provide floating-
point arithmetic, while Floating-Point-Processor-With-Cache combines the definitional aspects
of Floating-Point-Processor and Processor-With-Cache. The concept Floating-Point-Processor-
With-Cache may inherit all its definitional aspects and not have any defined locally.

2.2 Roles

A CADRES concept (design description) elaborates definitional aspect with roles and rela-
tionships. A role defines some aspect of the concept with which it is associated, and records
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Figure 1: Concepts and Inheritance

Figure 2: Role

information as to the type and number of objects which can fill this role in an instance of the
concept. For example, the concept Processor-With-Cache contains a role (call it cache) which
can be filled with one or more objects whose type is the concept Cache (another concept in
CADRES), as diagrammed in Figure 2. Roles can also specify their relation to roles in sub-
suming concepts. For example, the concept Processor-With-Instruction-Cache is subsumed by
Processor-With-Cache, and has a role which restricts the role cache of Processor-With-Cache
by requiring that the objects which fill the role are of type Instruction-Cache, a concept sub-
sumed by the concept Cache. The concept of a processor with multiple caches is specified by
differentiating the cache role of Processor-With-Cache with several roles, each of which may
restrict the type and/or number of potential objects which can fill the role.




Figure 3: Relationship

2.3 Relationships

A particularly interesting capability of KL-One is the structural description, termed relationship
in CADRES. (We have adopted the term relationship, as the term structure has a specific
connotation in VLSI CAD systems.) A relationship of a concept expresses an interrelation
between roles of that concept. We have found several applications of this idea in representing
design knowledge, and we believe that there will be more. First, relationships are used to express
interconnect between ports in a design. In a design description of an ALU, the net connecting
port Data-0-Bit-0 with port Data-0 of component ALU-Bit-0 is expressed as a relationship of
ALU which coreferences roles Data-0-Bit-0 and (Data-0 ALU-Bit-0), as diagrammed in Figure 3.
The expression (Data-0 ALU-Bit-0) is called a role chain, and is the mechanism for accessing
roles of a potential role filler.

The CADRES relationship has also been employed to represent constraints between roles.
In addition to specifying the roles which are involved in the relationship, the relationship itself
is typed as to the relation being applied. In the case of nets, the relationship is a connection.
In the case of constraints, the relation can be one of many types of constraints available in
the system. For example, a constraint between the delays of two components of a design can
specify that the delays be equal, or that one must be greater than the other.

Another type of description in which relationships play a part are parameterized design
descriptions. Parameterization can be applied to the number of occurrences of a role filler, or
to the type of a role filler. Currently, we have implemented parameterized descriptions only
with respect to the number of occurrences of a role filler. Consider constructing the concept
N-Input-Nor. First, a role defining a parameter (call it number-of-inputs) is added, with the
potential role filler restricted to be an integer greater than 1. Next, the role defining the input
ports of an N-Input-Nor is defined, with the role fillers restricted to be of type Input-Port and
with the number of role fillers restricted to be number-of-inputs. When an instance of this
concept is created, the "parameter” role number-of-inputs must be filled with an integer.

When a concept of this sort is being instantiated as a role filler of another concept, the
parameter role filler can be obtained from the referencing concept. For example, the concept




Joe’s-Design has a role whose filler is restricted to be an N-Input-Nor, a role which is the
parameter specifying the bit width of Joe’s-Design, and a relationship which specifies how
this parameter is related to the parameter role of N-Input-Nor. This ”parameter binding”
relationship coreferences the parameter role of Joe’s-Design and the role number-of-inputs of
concept N-Input-Nor, requiring that they be equal. When Joe’s-Design is instantiated, an
integer value is required for the parameter role of Joe’s-Design, and this value is also associated
with the number-of-inputs role of the occurrence of N-Input-Nor.

2.4 Rationale

The benefits we believe are gained in expressing design descriptions in CADRES are discussed
in some detail below, and are summarized here. First, CADRES provides the mechanisms for
representing design abstractions or generalizations. Second, CADRES provides the structure
for inheritance, thereby allowing data to be associated with design abstractions and inherited by
those design descriptions subsequently classified "under” that abstraction (i.e. the abstraction
subsumes the newly classified concept). Third, the uniform representation of design infor-
mation allows algorithms for classification, generalization, search, knowledge application, and
learning to be concerned with a few, conceptually simple, data structures. The real uniformity
requirement is in the kind of information required for these algorithms, and hence, this single
representation paradigm has been adopted.

3 Design Flow

The manner in which CADRES supports a design reuse strategy is best viewed with respect to
the abstraction refinement design model. As stated above, an abstract design description can
be retrieved from the knowledge base of designs, or can be entered explicitly by the designer.
Once an abstract description is specified, the designer copies and modifies the description in
one of the following ways:

e Add more information about the design (select the technology of interest)
e Add to a particular view of the description (structural, dataflow, control flow)

e Add detail to some component of a particular view of the description (select a more
specific type for some structural element)

To support adding more information about the design, the representation of the design
abstraction in CADRES records the known attributes and aspects of designs of the type that
is being done. For example, CADRES records the fact that process technology is an attribute
of designs. Once this attribute has been specified to some level of detail, say CMOS, the design
abstraction can be classified as a kind of CMOS design. This new classification will then add
additional attributes and aspects to the design abstraction, since the design abstraction is now a
kind of CMOS design and inherits the attributes and aspects of CMOS designs. The attributes
of a design are not limited to those recorded in CADRES, and new attributes can be specified.
This new information is then recorded in the CADRES representation of the design.

To support adding information to a particular view of the design description, the knowledge
base records information about what views are available and how they are associated. Also, the




CADRES framework provides the structure into which other types of knowledge (rules, plans,
etc.) can be placed.

4 Generalizations

Design generalizations are important in CADRES because they are the concepts which new
designs are classified as a kind of”. Also, they are a source of abstract designs which can be
subsequently refined by the designer. The type restriction and number restriction features of
concept roles in CADRES provide a convenient mechanism for specifying generalizations.

The most direct method of capturing design generalizations is to enter them directly via
editors. A schematic editing tool can be used to describe a block with substructure, where
the substructure components are occurrences of abstract designs known in the knowledge base.
For example, to enter the abstract description of a Floating-Point Processor, a block is created
with the structural components of Control, Floating-Point ALU, and Memory. These struc-
tural components are themselves abstractions, presumably with one or more refinements in the
knowledge base. The abstract interface of Floating-Point Processor, namely data input, data
output, control input, and control output are also specified. Note that at this level of abstrac-
tion, details such as the width (number of bits) of these data and control paths has not been
specified. The interconnect among these components and between the components and the
interface can also be specified, again with details such as data path width and specific control
signals unspecified.

Ideally, these abstractions should be generated by the system itself, either upon demand or
unsolicited. Identifying and creating abstractions or clusterings is an area of interest in the field
of machine learning [Mitchell 1982], [Fisher 1985], [Lebowitz 1986], [Michalski, Stepp 1986].
While a specific generalization algorithm has not been selected or developed, some types of
generalizations which can be made from design descriptions have been identified and are de-
scribed here with some examples.

Removing definitional aspects: Generalizations can be created by removing specific intercon-
nect, specific ports, and/or specific components. For example, the generalization of a Flip-Flop
interface could be generated by removing the specific input ports of known flip-flops such as
J-K or S-R.

Generalizing types: Generalizations can be created by abstracting the type of specific as-
pects of a design description, such as the structural aspects of a design. For example, the
generalization Processor-With-Cache could be created from the definitions of different proces-
sors which use different types of cache. The resulting abstraction has a structural component
whose type is the generalization of the specific caches used in the processors of which this is an
abstraction.

Parameterization: Generalizations can be created by recognizing that aspects of design
descriptions can be parameterized, both in the number of occurrences of the aspect, and in the
type of the aspect. For example, the number of data bits of a Boolean logic gate or of an ALU
can be parameterized. The specific type of a structural aspect such as a component or port can
be specified as a parameter. Parameterized descriptions not only capture the abstraction, but
they also describe how the parameterized aspect might be refined.

The traditional problems of machine learning, namely When and what to generalize, can
overwhelm the problem of simply representing the abstractions. Our strategy is to take cues



from the designer and design activity to approach this problem. In addition to the CADRES
classification of a design, an open classification or indexing facility is provided. This facility
allows designers to arbitrarily specify groupings of objects which they have entered or found in
the knowledge base, irrespective of their strict CADRES classifications. From the system point
of view, these are object groupings created by experts, and are interesting for one reason or
another. The designer or CAD System manager could explicitly request that a generalization
be created from an index group.

We believe that other information explicitly entered during design or implicit in design
activity can assist in addressing the When and what to generalize? problem, and this is one
area of our current research.

5 Classification

Classification of a concept in CADRES is the problem of placing a new concept in the structured
inheritance network. Ideally, when a concept is classified, all possible subsumption relationships
are identified and added. Classifying a new design description is limited by the features of the
description and the ability of the representation language to express these features. Features
such as port type or signal rise time are straightforward to represent, while general represen-
tations of function are not. [Brachman, Levesque 1984] and [Patel-Schneider 1986] discuss the
computational complexity of classification.

The appropriate classification of new designs is required to support knowledge base search for
reusable designs and design knowledge. Classification of concepts in CADRES is one mechanism
for organizing or grouping designs. Other design grouping mechanisms are not constrained to
the strict subsumption sematics of CADRES, and allow designers to create arbitrary groupings
of design objects for their own purposes. Only classification in CADRES is discussed here.

CADRES classification, as in KL-One classification (see [Brachman, Schmolze 1985],
[Schmolze, Israel 1983], and [Schmolze, Lipkis 1983]) is concerned with role restriction, both
in the type of the potential role filler and the number of occurrences of the role filler. Our
approach to providing CADRES classification has been to first provide support for manual
classification via an algorithm which can answer the question ”Can Concept A be classified
under Concept B?”. This question is initiated by the designer or CAD database administrator
while attempting to integrate (classify) new designs into the existing knowledge base. The next
step will be to develop search techniques for identifying potential subsumption relationships.
These two capabilities can then be combined to provide some degree of automatic classification.
Generalization algorithms must also be developed to identify and create design abstractions
under which new designs can be classified.

6 Search

Finding design knowledge for reuse is the primary objective of search. In attempting to find
reusable design knowledge, the search algorithms look for the piece of design knowledge that
best fits the specific requirements of a particular design situation. We have dubbed this type
of search "best-fit” search. Best-fit search can be characterized as an exhaustive, attribute
pattern-matching search, and can be expensive, depending on the size of the search space.



The perceived accessibility of reuseable design knowledge should be high. A designer must
feel that it is more expedient to reuse an existing piece of design knowledge than to recreate
it on the fly, even though that particular piece of knowledge is well understood and easily
reproducible. For example, designing an adder is probably second nature to most desginers,
but it is still more efficent to reuse an existing adder, since other information besides the
structure of the adder can also be reused (e.g. timing data, test data, layout). However, if the
process by which that best-fit adder is found and reused disrupts the designer’s flow by being
slow, complicated, or non-intuitive, designers will take the time to reproduce it.

6.1 Search Space

The potential search space encompasses the domain of VLSI design specifications. The topology
of this space is dynamic in that there is a continual influx of new design objects. New design
objects are either generalizations or specializations of existing design objects. New subsumption
relationships augment the inherited attributes of all concepts in the hierarchicaly below the new
subsumption link. The influx of both generalizations and specializations provides the potential
for ”better-fits”. Having once found a best-fit piece of design knowledge for a specific design
situation does not guarantee that that same piece of design knowledge will best fit the same
design situation at a later time. One of the important strengths of a reuseable design knowledge
base is that it reaches beyond the comfortable sphere of design knowledge possesed by a single
designer into the larger sphere of collective experience.

6.2 Using Abstractions

Since the search space can be very large (in fact, a larger search space implies that more design
knowledge is available), performing a best-fit search conjures up the image of the needle in the
hay stack. If reuseability is to be effectively employed in the design process, a way must be
found to reduce the size of the search space in which best-fit search takes place. In a more
general sense, we must find ways to improve navigation in such a large space.

Recall that an abstraction describes those characteristics shared by all refinements of the
abstraction. For example, the abstraction for a processor describes those characteristics of a
processor that all processors share: memory, a controller, and an alu as shown in Figure 4.
Furthermore, any concept in CADRES subsumed by the processor abstraction is semantically
understood to specialize the abstraction, ie., a floating-point processor has memory, a controller
and a floating-point alu. In general, an abstraction is any concept in CADRES that is specialized
by other objects. For example, floating-point processor could be specialized by floating-point-
auto-cache processor. One of the ways in which abstraction helps a designer navigate a large
search space is by providing direct pointers to components of an abstract design. The abstract
view of a processor might appear as a box with input ports, output ports, memory, a controller
and an alu.

For the designer who has never designed a processor before, the abstraction shows the de-
signer what a processor is composed of and provides a template for guiding the design process.
If the designer has never designed some particular component of a processor, say the controller,
and wishes to find out what makes up a controller, he/she may push into the controller ab-
straction to see its structure. An abstract view of a controller might appear as a box with
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Figure 4: Processor Abstraction

input, output, input logic, output logic and memory. This process of pushing into abstraction
is recursive. Eventually the designer must refine each abstraction.

6.3 Refining Abstraction

Refining abstraction is the process of finding the specialization of the abstraction that best
fits the specific requirements of the design. It is not always necessary to push down to the
lowest levels of abstraction before refining. It really depends on how well the knowledge base is
stocked. Initially, the knowledge base may contain only primitive gate level components such
as NOR, or NAND. As the the knowledge base matures, more and more complex objects like
ADDERs, COUNTERs, REGISTERs, ALUs, CONTROLLERs will populate the knowledge
base. To refine abstraction, we use best-fit search.

Best-fit search is an expensive search even for relatively small search spaces like an abstrac-
tion subtree. The nature of a best-fit search suggests that the only way to be sure that the
best-fit object has actually been found is to look at every object in the search space. The
algorithm we use however takes advantage of the fact that the search space is organized hier-
archically. We view an abstraction subtree as a collection of subtrees and so on. As such, by
incrementally describing the attributes of the best-fit, we hone away those subtrees beneath the
abstraction subtree that hold no promise. We have dubbed this algorithm ”honing”.

Honing is performed by the designer, who interactively adds attribute patterns to a data
structure called a "honing-set”. A honing-set initially serves as a description of the best-
fit. Objects in the search space are matched against the honing-set. Each time an attribute
pattern is added to a honing-set, some of the potential best-fit candidates are honed away. In
association with each pattern in the honing-set we record the effect each pattern has on the
search. This record is demographical in nature because it provides valuable information about
the abstraction subtree population. The honing process continues until the best-fit is found.
Once the best-fit is found, it is returned to the design tool that originated the search.

In summary, the subsumption hierarchy of CADRES organizes design descriptions in a
manner which supports searching and abstraction refinement.



7 Summary

Our work on placing design descriptions in CADRES has directed our implementation, and we
have found the features of KL-One to be suitable for representing design information. With the
exception of parameterized descriptions, the representational capabilities discussed here have
been implemented. Parameterization of the number of occurrences of some aspect has been
implemented, while parameterization based on type is in work. Parameterization of conditional
aspects (as opposed to iterative, or one or more occurrences) is also under study. However,
conditional aspects are similar to cancellation of properties, which is not allowed in KL-One
subsumption.

Classification capability is currently limited to manual classification, with a supporting
algorithm which can handle questions of the the form ”Can Concept B be classification under
Concept A?”. Classification candidate search techniques are under investigation. The initial
implementation of search has been completed, and its capabilities and performance are being
researched.

The V3 MCC CAD System has been implemented on LISP workstations in Common-LISP.
The CADRES representational capabilities are implemented as described above, and have been
integrated into the V3 System. This integration includes saving CADRES objects (concepts) in
the storage system which supports the V3 System, and capture of design descriptions entered
via 1) a schematic editing tool, 2) a layout editing tool, and 3) VHDL (VHSIC Hardware
Description Language) source. An interface for browsing and editing the CADRES network
has also been implemented, and currently provides the interface to existing design information.
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