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Lecture Notes on Random Graphs

Many computational problems on graphs are NP-hard, such as Hamiltonian Cycle, Max
Clique, and Max Independent Set. Are these hard on average? To study this and related
questions, it helps to study random graphs.

There are two common models for random graphs. In Gn,p, a graph G on n nodes is chosen
so that each of the possible

(
n
2

)
edges is added independently with probability p. In Gn,m, a

graph G is chosen uniformly from all graphs on n nodes and m edges.
Gn,p and Gn,m are closely related when the expected number of edges

(
n
2

)
· p = m. See

Section 5.6.1 of the Mitzenmacher-Upfal text for details. However, Gn,p is generally simpler to
analyze, because we have independence. Hence we focus on this model.

1 Evolution of Random Graphs

We now think of growing a random graph by adding random edges one at a time. How does
the random graph evolve? We study this question in the simpler Gn,p model.

Theorem 1. For p = o(1/n) and large enough n, with high probability a graph G drawn from
Gn,p is a forest.

Proof.

Pr[G is not a forest] = Pr[G has a cycle] ≤ E[number of cycles in G]

=
n∑
k=3

n(n− 1) · · · (n− k + 1)

2k
pk

<

n∑
k=3

(pn)k

2k

< 2 · (pn)3

6
= o(1).

The last inequality uses that pn < 1/2 for large enough n.

We state the following without proof. Let p = c/n. Then with high probability the size of
the largest component is:

• Θ(log n) for c < 1,

• Θ(n2/3) for c = 1, and



• Θ(n) for c > 1.

Thus, there is a sharp threshold around p = 1/n.
By the coupon collector problem, with high probability there are no isolated nodes in Gn,m

when m ≈ (n lnn)/2. Therefore, it occurs in Gn,p when p ≈ (lnn)/n. When p is slightly larger,
not only are there no isolated nodes, but with high probability the graph is connected.

2 Size of Largest Clique

With high probability, the size of a largest clique in Gn,1/2 is (2 + o(1)) log2 n. To show this, we
use a well-known upper bound on the size of a binomial coefficient.

Fact:
(
n
k

)
≤ (ne

k
)k.

Using this, we prove an upper bound on the clique size as follows.

Pr[∃ k-clique] ≤ E[number of k-cliques] =

(
n

k

)
2−(k

2)

≤
(ne
k

)k
· 2−k(k−1)/2

=
(ne
k
· 2(1−k)/2

)k
.

Setting k = 2 log2 n, the upper bound becomes (
√

2e/k)k, which goes to 0 as n→∞.

3 Greedy Algorithm for Finding a Large Clique

Max Clique is extremely difficult to approximate in the worst case. For any ε > 0, it is NP-hard
to distinguish graphs that contain a clique on n1−ε nodes from graphs with all cliques smaller
than nε.

We study a simple greedy algorithm to find a large clique in a random graph from Gn,1/2.

S ← ∅
For j = 1, 2, . . . , n

If S ∪ {j} is a clique, then S ← S ∪ {j}
Return S

To analyze this, let the random variable Xi denote the number of vertices inspected in this
algorithm while |S| = i. Since the probability of a new vertex being connected to all nodes of S
is 2−i, we conclude that Xi is a geometric random variable with success probability 2−i. Hence
E[Xi] = 2i.

Let the random variable X denote the number of vertices inspected until the algorithm finds
a clique of size k. Then

X = X0 +X1 + . . .+Xk−1.



Therefore,
E[X] = 1 + 2 + 22 + . . .+ 2k−1 = 2k − 1.

Heuristically, this suggests that the algorithm should find a clique of size k where 2k ≈ n,
i.e., k ≈ log2 n. This is about half the size of a largest clique.

Formally, we can say the following. Let S denote the output of the algorithm. Then

Pr[|S| < k] = Pr[X > n] <
E[X]

n
<

2k

n
≤ 1

2c
,

if we set k = log2 n− c.


