- 1. Problem 4.11. Randomly rounding a real number r to an integer means rounding to $\lceil r \rceil$ with probability $r \lfloor r \rfloor$, and to $\lfloor r \rfloor$ otherwise. Randomly rounding a vector means randomly rounding its coordinates independently.
- 2. Problem 4.15.
- 3. Problem 4.16.
- 4. Let \mathcal{D}_i , i = 1, 2, ..., n, be finite sets. Suppose f satisfies the Lipschitz condition (Definition 4.12). Prove that if all X_i are chosen uniformly and independently at random from \mathcal{D}_i , then

$$\Pr[f(X_1, X_2, \dots, X_n) - \mathbb{E}[f(X_1, X_2, \dots, X_n) \ge \lambda \sqrt{n}] \le e^{-\lambda^2/2}.$$

5. Consider using randomized routing in an N-node hypercube to route at most ℓN packets, where each node is the source of at most ℓ packets and the destination of at most ℓ packets. Give a high probability bound on the time for all packets to reach their destination. (This should be better than ℓ times the time for N packets; ℓ is not necessarily a constant.)