Computing Efficiently Using General Weak Random Sources

David Zuckerman
University of California at Berkeley
Ph.D. Thesis
August, 1991

Abstract

In this thesis, we study how to efficiently simulate randomized algorithms while
making only minimal assumptions on the quality of the randomness available to the simu-
lation. We basically show that the randomness need not have a particular form; it suffices
to have the randomness output at a constant rate. More specifically, when our model of
a d-source outputs an R-bit string, the only constraint is that it must do so according to
some distribution that places probability no more than 27°F on any particular R-bit string.
We show how to simulate BPP and approximation algorithms using the output from such
a source.

We also give two applications of these constructions: one to showing the difficulty
of approximating the size of the maximum clique, and the other to the problem of implicit
O(1) probe search.

Furthermore, we show how to extract almost-random bits at a nearly optimal rate
from a constant number of §-sources, under the Generalized Paley Graph Conjecture. With
no unproven assumptions, we show how to extract almost-random bits at a nearly optimal

rate from three PRB-sources of [CG2], improving the results there.

Contents

1 Introduction
2 Hashing Lemmas

3 J-Sources and Deterministic Amplification
3.1 Definitions and Observations
3.2 Deterministic Amplification oo oo

4 Simulating RP
41 Case d>1/2
4.2 General Case e e e

5 Simulating BPP

6 Extracting Almost-Random Bits
6.1 PRB-Sources e
6.2 o0-Sources: Case d > 1/2
6.3 J-Sources: Case 0 >0 L

7 Applications
7.1 The Difficulty of Computing MAX CLIQUE
7.2 Implicit O(1) Probe Search

Bibliography

ii

10
10
13

16
16
20

25

30
30
33
34

39
39
41

46

iii

Acknowledgements

First and foremost, I am grateful to my advisor, Umesh Vazirani, for helping me
during all stages of my graduate career. In my first paper, when I had one last difficulty to
overcome, he saw a brilliant way to overcome it. This helped give me the tenacity to push
through ideas to the end. This, moreover, was only one of many great ideas he was to share
with me. Another great quality he has is his enthusiasm — when he exclaimed “oo ba-ba,”
I knew I had done well.

I am also grateful to other professors who gave me both good technical and non-
technical advice. David Aldous was especially helpful during my first two years, when he
taught me a lot about random walks and probability theory. Mike Luby and I had many
stimulating and informative conversations about randomness. Dick Karp taught two of my
favorite classes and gave me many useful pointers. Manuel Blum showed me several great
ideas he’s had.

The students at Berkeley influenced me as much as the professors. I would like to
thank my co-author Russell Impagliazzo for teaching me about the Leftover Hash Lemma
and other aspects of randomness and cryptography. I had many interesting conversations
with Noam Nisan about pseudo-random generators and, before that, random walks on
graphs. Madhu Sudan made several important comments on my work, including pointing
out, with Abhijit Sahay, the mistake in my original n!°8” RP simulation. Among other
things, Moni Naor pointed out the connection with his work. I spent many informative
hours working with Sandy Irani. Ronitt Rubinfeld helped me a lot during my first year,
and I had many interesting conversations with her. Milena Mihail taught me a lot about
expanders.

I would also like to thank Pete Gemmell, Will Evans, David Wolfe, Sampath
Kannan, Dana Randall, Nina Amenta, David Blackston, David Cohen, Eddie Grove, Mor
Harchol, Lisa Hellerstein, Diane Hernek, Lee Newberg, Sridhar Rajagopalan, Ashu Rege,
Steven Rudich, Jim Ruppert, Elizabeth Sweedyk, Debbie Weisser, and the rest of the theory

group for making Berkeley a fun and interesting place to learn theoretical computer science.

Chapter 1

Introduction

Randomness plays a vital role in almost all areas of computer science, both in
theory and in practice. Randomized algorithms are often faster or simpler than the deter-
ministic algorithms for the same problem (see e.g. [Rab]).

To produce “random” bits, a computer might consult a physical source of random-
ness, such as a Zener diode, or use the last digits of a real time clock. In either case, it is
not clear how random these “random” bits will be. Moreover, it is impossible to verify the
quality of a random source. It is therefore of interest to see if weak, or imperfect, sources
of randomness can be used in randomized algorithms. Indeed, the fewer assumptions we
make about the quality of our random source, the greater the chances are that the source
satisfies these assumptions and hence that our randomized algorithms work correctly. This
emphasis on reliability seems even more important as computers become faster, because
users should be willing to pay a greater price for greater accuracy. This ties in with the
recent interest in checking.

The history of weak random sources reflects this ideal of using as weak a source as
possible. As far back as 1951, Von Neumann [vN] gave a simple and practical algorithm to
extract perfectly random bits from a source of independent coin flips of equal but unknown
bias. Elias [Eli] improved this by showing how to extract bits at the optimal rate.

The problem of correlations, however, is more serious. Blum [Blu] was the first
to tackle this by modeling a weak source as a Markov chain. He showed that a counter-
intuitive generalization of von Neumann’s algorithm converts the output from such a source
into a truly random string.

Yet the requirement that a source be Markovian is very stringent, requiring the

source to be very regular. This motivated Santha and Vazirani [SV] to ask: what if we
only know that each bit that the source outputs is somewhat random? To answer this, they
introduced the model of semi-random sources, where the probability of a given bit having a
specific value, conditional on the value of previous bits, is not too large, but can otherwise
be controlled by an adversary. They proved that it is impossible to extract even a single
almost-random bit from one such source.

In light of this result, one might give up hope for simulating randomized algo-
rithms with one semi-random source. Nevertheless, [VV] and [Va2] showed how to simulate
RP and BPP with one semi-random source. Vazirani [Val,Va3] also showed how to extract
almost-random bits at a constant rate from two independent sources. Moreover, his algo-
rithm extracts n almost-random bits even if the sources are allowed to exchange n/logn
communication bits.

Chor and Goldreich [CG2] generalized this model by assuming no sequence of [bits
has too high a probability of being output. More precisely, !

Definition 1.1 (CG2) An (I,6) PRB-source outputs R bits as R/l blocks x1,...,7R,
each of length I, such that for all I-bit strings y1,...,Yr/,

Pr(z; = yilz1 = y1, ..., 721 = yi1] <27

A semi-random source corresponds to [= 1.

Note also that we do not know anything about the source except the restriction
above; our simulations must work for all such sources. Equivalently, we may assume an
adversary controls the output blocks, and need only abide by the restriction above.

For [= O(log R), Chor and Goldreich showed how to simulate BPP using one such
source. They further showed how to obtain almost-random bits from four independent such
sources at a constant rate.

Here we improve their construction by showing how to do it from three independent
PRB-sources at a rate approaching the optimal one. We also show how to extract almost-
random bits at a nearly optimal rate from one PRB-source using only O(log?n) bits from
a second, independent, high quality (but not nearly uniformly random) PRB-source. We

believe this simple algorithm to be of practical interest.

"We modify their definition into an equivalent form in order to correspond better with the rest of this
thesis.

Various authors have also considered models for weak sources where an adversary
chooses the values of certain bits, but the others are random (see [CG+], [BL], [LLS],
[CWi]).

Given all of this previous work, it is natural to ask: what is the most general
model of a weak source for which we can simulate randomized algorithms? Do we need the
randomness in some particular form, or will any form suffice?

Of course, if BPP = P, then we don’t need randomness at all. Yet we follow
[VV], [Va2], and [CG] and deal with a more abstract “BPP” problem: let an adversary
label strings in {0,1}" either “yes” or “no,” provided that at least 3/4 of the strings have
the same label. We wish to find out whether the majority say “yes” or “no,” with high
probability. It is clear that randomness really is needed to answer this question quickly.

One’s first guess at the most general source would probably impose a lower bound
on the entropy. For example, if the source outputs R bits, we might insist that the entropy
of the distribution on output strings be at least JR, for some constant §. If we did this,
however, the source could output a useless string with constant probability, and we could
never achieve a small error probability for our randomized algorithms.

Instead, we propose upper bounding the probability that any particular string is

output:

Definition 1.2 For any number R of random bits requested, a d-source outputs an R-bit
string such that no string has probability more than 27°F of being output, for some fized
0> 0.
Again, we know nothing else about the source; our simulations must work for all such
sources.

It is also important to note that if, say, we make two requests of 100 bits, we do

not impose the 271000

upper bound on each group of 100 bits. Indeed, it is easy to imagine
a source outputting good bits at the beginning but later outputting highly correlated bits.
We therefore impose the 27209 upper bound on the total 200-bit string. Equivalently, we
assume that only one request for random bits is made to the §-source.

This model essentially generalizes all of the above models,? making no structural
assumptions about dependencies. The generality of our model is further substantiated by a

lemma of Cohen and Wigderson [CWi]: if we can simulate RP or BPP using a d-source, then

2One of the bit-fixing sources in [CWi] has a weaker entropy bound than that which we impose. Our
model can be modified to generalize this source, too, but then our simulations would fail.

we can achieve a constant probability of success with any source having constant entropy
rate. As Cohen and Wigderson point out [CWi], the largest upper bound one could impose
in the definition above and still possibly get (abstract) RP or BPP simulations is 2R

In our main results, we show how to simulate RP and BPP in polynomial time
using the output of a d-source for all § > 0. These algorithms also yield solutions to more
general problems. Our RP simulation implies that we can find an n-bit prime using a
d-source. Our BPP simulation yields simulations for approximation algorithms, e.g. those
used to approximate the volume of a convex body [DFK], or a statistical simulation to
estimate some quantity or set of quantities.

We also show how to extract almost-random bits at a rate arbitrarily close to
optimal from a constant number of d-sources, under the Generalized Paley Graph Conjec-
ture. The Generalized Paley Graph Conjecture asserts, in a certain technical sense, the
independence of the additive and multiplicative groups modulo a prime. Chor and Goldre-
ich [CG2] have shown how to extract one almost-random bit from two J-sources under the
Paley Graph Conjecture.

Simulating RP and BPP using the output of a d-source is related to deterministic
amplification. In the deterministic amplification problem, the goal is to reduce the error
probability of an RP or BPP algorithm from constant to exponential using few random
bits. Building on work in [AKS], we show that if r bits are needed to achieve constant
error probability for a BPP algorithm, then only O(r) bits are needed to achieve error 27"
(this was done independently in [CWi]). This means that very few random strings give the
wrong answer, and implies simulations using a d-source for RP when § > 1/2 and BPP
when 0 > 3/4 (done previously in [CWi]).

Our simulations of RP for all 6 > 0 also yield interesting results for the determin-
istic amplification problem: in the above framework O(rlogr) bits are needed to achieve
error probability 27" (our BPP simulation is not so interesting in this regard, since it re-
quires 7°(1/9) bits). Furthermore, once we use at least O(rlogr) bits, our RP simulation
reduces the error faster than other known methods: using cr logr random bits yields error
probability 2-(1=9erlog” fo1 any constant 4.

The simulations of RP and BPP are equivalent to the explicit construction of a
certain type of expander graph, called a disperser (see [San], [Sip], [CWi]). We believe
our disperser constructions will be useful in many different areas. To illustrate this belief

we give two applications: one to showing the difficulty of approximating the size of the

maximum clique, and the other to the problem of implicit O(1) probe search.
Computing a = a(G), the size of the maximum clique, is well known to be NP-
complete [Kar]. Little was known about the difficulty of approximating « until Feige, et.al.

isin]5, then NP = P

logn)l—¢

[FG+] showed that if approximating « to within a factor of 2
(P denotes quasi-polynomial time, i.e. 2P0Wio9),

Since it is infeasible to find close approximations, one can ask whether it is feasible
to at least estimate the order of magnitude of . More precisely, is there an algorithm that
for some constant ¢ outputs a number between o'/t and o!? By applying our disperser
construction to the proof of [FG+], we show that the existence of such an algorithm implies
NP = P.

Implicit O(1) probe search is the problem of arranging n elements from the domain
{1,...,m} in a table of size n so that searching for an element can be done with a constant
number of probes. Fiat and Naor [FN], building on [FKS] and [FNSS], show how to do this
when m is polynomial in n. In addition, they show how to do it for the case m = n'°8",
assuming a certain type of disperser can be explicitly constructed, as was conjectured by
Sipser [Sip].

We cannot construct this disperser, but by constructing three other dispersers, two
of which come directly from the RP construction above and the third of which relies heavily
on the theory we’ve developed, we give the first constructive solution for m superpolynomial
in n. The exact function is m = n%. Our solution is weaker than the earlier results,
however, in that it does not allow search to be done in constant time, despite the constant
number of probes.

Most of our main results appear in preliminary form in [Zu2].

Chapter 2

Hashing Lemmas

One of our key tools is a modification of the Leftover Hash Lemma. The Leftover
Hash Lemma was introduced in [ILL] in order to construct cryptographically secure pseudo-
random generators from one-way functions. It was then used extensively in [IZ] to construct
pseudo-random generators for various tasks without any complexity assumptions. A similar
lemma was also used in [BBR].

In order to state this lemma, we need some definitions.

Definition 2.1 A probability distribution D on a set S is quasi-random within € if for all
X CS, |D(X)—|X|/|S|| <e. Here D(X) denotes the probability of the set X according to
distribution D.

The maximum difference above is also called the variation distance between D and the

uniform distribution, and is also equal to £ 3,4 |D(s) — 1/S]].

Definition 2.2 (CWe) Let A and B be two sets, and H a family of functions from A to
B. H is called a universal family of hash functions if for every x1 # x2 € A and y1,ys € B,

Pricp[h(z1) = y1 and h(zg) = yo] = 1/|B|2.

It is important for our purposes that there is a universal family of hash functions

from {0,1}™ to {0,1}" of size 2™™.1 To see this, let F' be the finite field on 2™ elements.

'1f we only want Pr[h(z1) = h(z2)] = 1/|B|, which is all that is needed for the Modified Leftover Hash
Lemma, then for certain lengths m there are families of size 2™ %" (see [Val]).

Then H = {(a,b)|a € {0,1}™,b € {0,1}"} is universal, where
(a,b)(z) = (last n bits of a - z) ® b,

where the multiplication is in F' and @ denotes bitwise exclusive-or. Using the results of
[Sho|, we can efficiently construct F' deterministically.

The Leftover Hash Lemma is best explained in the following context: suppose we
have an element x chosen uniformly at random from a set A, where A is contained in a much
larger set {0,1}". We don’t know anything about A, except that |A| > 2!. The Leftover
Hash Lemma allows us to convert the randomness in x into a more usable form, provided
we have enough extra random bits. These extra bits are used to pick a uniformly random
hash function h mapping n bits to [— 2k bits, where k is a security parameter. The Leftover

Hash Lemma guarantees that the ordered pair (h, h(z)) is almost-random.

Leftover Hash Lemma [ILL]: Let X C {0,1}",|X| > 2\. Let e > 0, and let H be
a universal family of hash functions mapping n bits to [— 2e bits. Then the distribution
(h, h(x)) is quasi-random within 1/2¢ (on the set H x {0, 1}'=2¢), where h is chosen uniformly
at random from H, and z uniformly from X.

It is important that we have the ordered pair (h,h(z)), because it allows us to
use the same hash function repeatedly: even after outputting h(z), h will appear close to
random. When we do use the same hash function repeatedly, the following useful lemma

will imply that the statistical error only grows additively.

Lemma 2.1 Suppose f is a function satisfying the property that if x is picked uniformly
at random, then f(z) is quasi-random within €. Then if x is quasi-random within €, then
f(z) is quasi-random within € + €.

We will need the Modified Leftover Hash Lemma to deal with the situation when

the hash function is not close to uniformly random.

Lemma 2.2 (Modified Leftover Hash Lemma) Let H = {h : I — O} be a universal
family of hash functions, and let A C I and C C H. Then the distribution (h,h(z)), where
h is chosen uniformly from C and x uniformly from A, is quasi-random within CTA] on

the set C' x O.

Remark 2.1 For our purposes, it would suffice to derive the bound % % directly from

the Leftover Hash Lemma: this follows because the probability space in the modified case is

a subset of size |C|/|H| of the original probability space. For completeness, however, we

include the stronger bound.

Proof. We use ideas of the proofs in [MNT],[BBR], [ILL], and [IZ]. Let p;, , = Pr[h(z) = 2]

where z is chosen uniformly from A. Thus the probability that a particular (h,z) occurs

according to the distribution above is 7’5“ The variation distance between the two distri-

butions above on (h,h(z)) is 1/2 times

Ph,z 1 Ph.2 1 2
:___—__|< ||c|0 2
210 wwﬂf$”'%§me o)

heH,z€0

Ph,z 1 2
S\IICIIOI > (|C|_W)

p}% 2py, 1
= 1|C||O 2z — ~ .
«”' >, e ~ icrior * iemor)

heH,2€0
Now
Y pns=Prlh(z) € 0] =1,
z€0
and

> Ph.=HIPr[h(z) = h(y)]
heH,z€0
if h is picked uniformly from H, and z,y independently and uniformly from A. Using the
above and
Prit(z) = h(w)] = Prle = 3]+ Priz #4150 < T+ o

yields the lemma. u

When we analyze d-sources with ¢ > 1/2, the following lemma found in [MNT]
will be useful. At the expense of not bounding the distribution of the ordered pair (h, h(z)),
it gives a somewhat better bound on the quasi-randomness of h(x). Because it does not
involve the ordered pair, however, it will not be as useful as the Modified Leftover Hash

Lemma. 2

2 Another difference between this lemma and the Leftover Hash Lemma is that the Leftover Hash Lemma
still holds when the hash family only has the property that Pr{h(z1) = h(z2)] = 1/|B| but not the full
pairwise independence.

Lemma 2.3 (MNT) Let H = {h : I — O} be a universal family of hash functions, and
let ACI, BCO, and C C H. Then

|H||B|
B|-|B TANOO0
|Prscaneclh(s) € Bl - |B|/|0]| < |A]|C]|0]

10

Chapter 3

0-Sources and Deterministic

Amplification

3.1 Definitions and Observations

Definition 3.1 RP is the set of languages L C {0,1}* such that there is a deterministic

polynomial time Turing machine My, (a,x) for which

a€L = Pr{Mp(a,x) accepts] > 1/2 (3.1)
a¢ L = Pr{Mgp(a,x) accepts] =0

la|

where the probabilities are for an x picked uniformly in {0, 1}p() for some polynomial p.

Definition 3.2 BPP is the set of languages L C {0,1}* such that there is a deterministic

polynomial time Turing machine My (a,x) for which
a € L = Pr{Mp(a,z) accepts] > 2/3 (3.2)

a ¢ L = Pr{Mp(a,z) accepts] < 1/3 (3.3)

lal) for some polynomial p.

where the probabilities are for an x picked uniformly in {0, 1}p(
As is well known, by running My, on independent random tapes, we can change
the probabilities in (3.1), (3.2), and (3.3) to 1 — 2-Pew(el) 1 — g-roly(lal) and 2-poly(lel)
respectively.
To define what simulating RP means, say we wish to test whether a given element

aisin L. If ¢ € L, then all random strings cause My, to reject, so there is nothing to do.

11

Suppose a € L; then we wish to find with high probability a witness to this fact. Let W be
the set of witnesses, i.e. W = {z|My,(a,x) accepts}, and N be the set of non-witnesses, i.e.
the complement of W.

One might think that to simulate RP using a d-source we would need a different
algorithm for each language in RP. Instead, we exhibit one simulation that works for all W
with [W| > 2"~1. In particular, we don’t make use of the fact that W can be recognized in

polynomial time.

Definition 3.3 A polynomial-time algorithm simulates RP using o 0-source if it takes as
input R = poly(r) bits from the d-source and outputs a polynomial number of r-bit strings y;,
such that for all W C {0,1},|W| > 271, Pr[(3i)y; € W] =1 — 2~ B,

As one might expect, the following lemma shows that such a universal algorithm

can be used for other purposes.

Lemma 3.1 If A simulates RP using a d-source, then in polynomial time we can find an
n-bit prime, with probability 1 — 2~ n),

Proof. We use only the simpler co-RP algorithms for primality (see e.g. [Rab]). These
algorithms require O(n) random bits, but let us use n(n—2) random bits. Run A to produce
polynomially many n(n — 2)-bit strings y;. We claim that with high probability, for each

composite n-bit number there will be a y; being a witness to this fact. This is because

Pr[3n-bit number with no witness among ;]

2" Pr[given n-bit number has no witness among y;]

<

9-(R)

By the Prime Number Theorem, the fraction of odd n-bit numbers that are prime
is at least 1/n. Thus, the probability that an n-tuple of odd n-bit numbers chosen uniformly
at random contains an n-bit prime is at least 1/2. (Note that this requires n(n — 2) bits,
because the first and last bits of an odd n-bit number are always 1.) Thus, the probability

R)

that there is such an n-tuple among the y; is 1 — 9~ (R) Verifying the primality by the

previous paragraph yields the lemma. O

For BPP, we have no “witnesses” to membership, but by an abuse of notation

we use W to denote the set of random strings producing the right answer, and N as the

12

complement of W. As before, a simulation of BPP will produce strings ¥; and use these to
query whether a € L. The simulation does not have to take the majority of these answers as
its answer, but can instead use any function of the answers. In fact, in our BPP simulation
we will build several ternary trees, associate the answers from the y;’s with the leaves, take
the majority of majorities in the trees, and then the majority of the answers given by the
trees.

For the purpose of the following definition only, we define S as the set of r-bit
strings saying a € L; we wish to know whether S equals W or N.

Definition 3.4 A polynomial-time algorithm A simulates BPP using a §-source if it takes
as input R = poly(r) bits from the §-source and outputs a polynomial number of r-bit
strings y;; A then takes some function of the answers to y; € S to produce a single guess as
to whether |S| is larger or smaller than 2"=', which for any S C {0,1}" with |S| > 22" or
S| < 127 must be correct with probability 1 — 9 SUR)

Note that such an algorithm A can be used to simulate approximation algorithms.
This is because whenever a majority of numbers lie in a given range, their median also
lies in that range. Thus, by taking medians instead of majorities, A can output a good
approximation with probability 1 — 2~ UR)

Simulations using a d-source are equivalent to the construction of a certain type of
expander graph, called a disperser (see [San, Sip, CWi]). We never use this graph-theoretic
approach, however, except in applying our construction to the problem of implicit O(1)
probe search (see Section 7.2).

Following [CG2], we define flat d-sources and show that we may assume without

loss of generality that our J-source is flat.

Definition 3.5 A flat d-source is a source which places probability 2% on 20% R-bit

strings.

Lemma 3.2 Suppose an algorithm simulates RP (BPP) from a flat 0-source. Then it also
simulates RP (BPP) from a §-source.

Proof. The proof in our case is much simpler than in [CG2]. Fix an algorithm A. On
certain input strings, A outputs the correct answer, and on others it doesn’t. The §-source
may as well place as much probability as possible on the strings for which A is incorrect,

i.e. the d-source may as well be a flat §-source. O

13

Remark 3.1 This observation, that some strings are good for A and others aren’t, implies
that an algorithm simulates RP (BPP) with probability 1 — 2~UR) from a §-source if and
only if it simulates RP (BPP) with non-zero probability from a ¢'-source, for some §' < 9.
This is because the probability of outputting the wrong answer is at most the number of bad
strings divided by 20% or 29 Therefore, we need not worry about simulating RP or BPP

with high probability, but only with non-zero probability.

3.2 Deterministic Amplification

Let L € BPP, a € {0,1}", and let 7 = p(n) be the number of random bits required
above. The usual way of improving the success probability to 1 — 27" is to generate O(r)
truly random strings of length r, query a with these random strings, and take the majority
vote. This requires O(r?) bits. The deterministic amplification problem is to do this with
fewer random bits. Here we give a scheme, based on [AKS] and found independently by
[CWi], where it suffices to use the optimal O(r) bits. In fact, it suffices to use O(r) bits
from a d-source for large enough 6.

Let us first observe the relationship of this problem to simulating BPP using a
d-source. Say a pseudo-random generator needs C'r bits to reduce the probability of error
to 277. Then there are at most 2(C~ D" “bad” strings of length Cr. Thus, if § > (C' —1)/C,
the probability of error will be 2(C=1rg=or¢ — 9=0(r)
construction [Mor| will imply RP simulations for § > 1/2 and BPP for § > 3/4. These

. Our construction and a new expander

bounds were achieved in [CWi] by combining this amplification construction with a different
idea, as the above expander construction was not available then.

We give the construction only for the BPP case when § = 3/4 + ¢; the RP case is
easier. For now, assume we have truly random bits available to us; we’ll use the idea in the
previous paragraph to do the final analysis at the end.

Our construction begins by using the usual technique to improve the success prob-
ability to 2~ ("t} where ¢ is an integer greater than 4/e. This requires ' = O(r) bits, so for
convenience replace r' by 7. With this new r, we show that to achieve error probability 2%
we need only r + O(k) bits. We do this by taking a random walk on an expander, an idea
used in [AKS].

A random walk on an undirected graph G is the sequence of vertices { X, } visited

by a particle that starts at a specified vertex and visits other vertices according to the

14

following transition rule: if the particle is at vertex ¢ at time wu, then at time u + 1 it
moves to a neighbor of i picked uniformly at random. Associated with a random walk
on G is the transition matrix A describing the probabilities of moving from one vertex to
another. For convenience, we define A as the transpose of the traditional transition matrix,
ie. A;j =1/deg(j) if i and j are neighbors, and 0 otherwise.

The matrix A has eigenvalues 1 = Ay > |A2| > |A3] > ... > |As]. We use an
expander construction by Morgenstern [Mor]| (based on [LPS]) with the following properties:
the graph G is d-regular for d = 2! 4+ 1; |G| = 2" — 2"/3; |\o| < 2¢/d — 1/d; and a random
walk on G can be simulated efficiently.

We can now state our algorithm.

Algorithm: Select a uniformly random start vertex Xy, and perform the random walk
{X,} for v < k. For every i € {1,2,...k} query if a € L using the r-bit pseudo-random
string represented by X;. Output the majority vote of these queries.

Proof of Correctness: We use the techniques in [AKS]. First, some notation:

C C @ is the set of vertices representing strings for which queries are answered
correctly. Note that |C|/|G| > 1 -2~ D /|G| >1 -2

P is the vector space R®, where s = 2" — 2"/3. P represents probabilities.

V is the subspace of multiples of pg = (277,27",...,277").

W is the subspace orthogonal to V.

FOI'p = (p17p27"'7ps) epP
Ip| = >°5-1 |pi|, the Li-norm.

lpll = /i1 07, the Lo-norm.

N : P — P is the linear transformation

N() e, ifieG-C
€; =
' 0 otherwise,

where e; is the basis vector with a 1 in the ith place and 0’s elsewhere.

M =1 — N, where [is the identity.

Note that if the vector p = (p1,...,ps) represents the probabilities of being at the
different vertices, i.e. p; = Pr[particle is at vertex 7], then Ap represents the probabilities
after a step in our random walk. Furthermore, N Ap represents the probabilities of being

at the different vertices and of not being in C. Extending this idea, we see that for a

15

given sequence of the correctness of answers to queries, e.g. correct, correct, incorrect, ...,

incorrect (denoted c,c,i,. . .,i)
Pric,ci,..,i] = [(NA)...(NA)--- (NA)(MA)(MA)po|
To bound the right-hand side, it is easier to use Ly norms. We need the following
lemma:

Lemma 3.3 Forp € P,

(1) [|M Apl| < [|pl|.
(ii) [|IN Ap|l < 2>~'/%p||.
Proof. (i) follows from the definition of M and because the eigenvalues of A are between -1
and 1. To see (ii), write p =v+w, v € V, w € W. Using Av = v and |G — C| < 27!|G/, we
get || NAv|| < 27%2|jv|| < 27*/2||p||. Since w is orthogonal to the eigenvector corresponding
to A, [NAw| < |Aw| < |Xo|jw|] < 2'=#2|jw|| < 2'=%/?||p||. By the triangle inequality,
INAp|| < |NAv|| + | N Aw|| < 2272||p|. O
Using |p| < 2°/2||p||, this lemma implies that for any sequence s with at least k/2

incorrect answers,
Prfs] < 29/2(|(NV A)2pg | < 28/2(22-12)k/2 |pg|| = 201/
Because there are at most 2¥ such sequences s,
Pr[3s with > k/2 incorrect answers] < 2F2(1=t/4k — 9(2=t/)k

When implementing the random walk, the error probability could actually be twice
that of the above, because the number of random strings is not a power of 2 and we have
to take our real random string modulo sdF.

We may use a d-source as long as we walk for at least k& > r steps. This is because

Pr[source outputs bad string] < (# bad strings) Pr[source outputs particular string]
< (sd - 22Dk (2(sqk))
< (2r2ktek/2t)17521+(27t/4)k
< Qlrktk)(1/4-e)+(2-t/4)k+1
< 27k using te > 4.

16

Chapter 4

Simulating RP

4.1 Case 6 > 1/2

Here we present another algorithm to simulate RP when 6 > 1/2. It has the
advantage over the previous algorithm of not relying on the explicit construction of ex-
panders, and hence being simpler to implement. More importantly, this algorithm sets the
framework for our general algorithm. It is also of interest that it is the same algorithm
that Nisan shows is a pseudo-random generator which fools all logspace machines [Nis]; his
results, however, do not imply ours. !

Our algorithms to simulate RP divide the R-bit string X into r-bit strings z1, ..., xx
(where R = O(rlogr)) and combine these strings in various ways. In order to prove that
our algorithms work, we need the following two lemmas, which show that it suffices to prove
the correctness of our algorithm on a (cr,d) PRB source as long as we only use O(rlogr)

bits from the source. Note that c¢r is much larger than the block lengths used in [CG2], so

our techniques are completely different.

Lemma 4.1 Fiz o> 0, §' < 0, and an integer k > 0. Let k' = [%1 = O(k), and set
R = K'l. Write the R-bit string X from the d-source as X = x10x90...0xy (here o denotes
concatenation), where each x; is | bits. For each initial string X; = x1 oxg0...0x;, label

any 2°¢ of the z;1’s as “6'-bad”; the others we call “6'-good” (when it is not ambiguous,

"When applied to the problem of deterministic amplification, his analysis yields an error probability of
27" using O(rlogr) bits, while we show an error probability of 277'°¢",

17

we will simply say “bad” and “good”). Then
Pr{for > k values of i, x; is good) > 1 — 27,

when X is drawn from a §-source.

Proof. Construct a tree corresponding to the outputs X of the source as follows: let the
nodes be all possible initial sequences X; for each 7, 0 < 7 < &/, and let the parent of X;
be X; 1. Define an edge (X;_1,X;) to be bad (good) if the string z; is bad (good) with
respect to X;_;. We wish to show that few of the 207 leaves have root-leaf paths with less
than £ good edges.

To bound this number, we observe that each parent has at most 2°! children
connected by bad edges, and at most 2! children. Thus, the total number of root-leaf paths
with &' — k specified bad edges (e.g. the edges at distances 2,3,6,7 from the root must be
bad) is at most

oklo (K k)"l

)

so the total number of root-leaf paths with at least k' — k bad edges is

kl ! !
okl (k' —k)d'l
<k>

Using (kk,) < 2% and substituting the definition of &’ in the above formula, we bound the

number by 2~%20R ag required. O

Lemma 4.2 If we have a polynomial-time algorithm that simulates RP using O(rlogr)
bits from a (cr,d') PRB-source of length O(rlogr), then we can construct a polynomial-

time algorithm that simulates RP using the output of a d-source, for any 6 > §'.

Proof. Suppose the simulation A using a PRB-source needs k blocks of length cr. Compute
k" as in Lemma 4.1, request k'cr bits from the §-source, and divide the string into &’ blocks
of length cr. We will run A on all subsets of £ blocks, and show that at least one of them
is likely to find a witness.

The idea of the proof is to build two trees, one corresponding to the PRB-source
and the other to the J-source. We then put probabilities of finding witnesses at the nodes
of the trees, and show that these probabilities are higher on the tree for the §-source.

As above, denote z1 o... 0 z; by X;. Define

p(X;, S) = Pr[A finds witness starting from X;],

18

where the probability is taken over the remaining (k — i)r bits of the seed being output by
a (cr,¢") PRB-source S. Now define
i) = (er,d") Plgyn]é{lsources S{p(Xi7 o)

Next call z; bad* with respect to X;_1 if X;_; oz; has one of the 29" least q(X;)’s,
for X;’s continuations of X;_1. In other words, z; is bad* if A, when fed X;_; o z; followed
by the output of a worst case PRB-source for this X;, has a low probability of finding a
witness. Thus a worst case PRB-source would only place positive probability on x; which
are bad*.

We use the above definitions of bad* to define good and bad on the tree for our
original d-source, as defined in Lemma 4.1. We work from the root down, proceeding as
follows: label a block z; by counting the number j of good blocks in the string X;_1,
concatenating these good blocks together to form X, and labeling z; as bad iff it is bad*
with respect to X;. This only makes sense if 7 < k; if j > k label x; bad if z; < 20er . By
Lemma 4.1, with high probability the string from the é-source is likely to have at least k
good blocks. Because there are only O(logr) blocks x;, we can try all possible subsets of
size k in polynomial time and hence have our hands on the first k good blocks, which we
call z1,..., k.

Now we claim that A will do at least as well on input x1,...,z; as on a random
output from an arbitrary (cr,d’) PRB-source, say source S. Since A either fails or succeeds
on a particular random string, this means A always outputs the correct answer on a sequence
of all good strings.

We prove our claim by induction on the statement:
q(X;) = Eq(Y),

where Y; is a random é¢cr-bit string from source S and X; denotes 1 o...ox;. It is true for

1 = 0, and assuming it for a particular i,

9(Xit1) = Epaq strings z;11 q(Xi © ziy1)

=q(Xi) > Eq(Y;) = Eq(Yiy1).

19

Thus, from now on, we assume all blocks of €(r) bits are output from an (Q(r),)
PRB-source, and we only request O(logr) blocks.

Suppose a € L. The starting point of our algorithms is due to Vazirani and Vazirani
[VV], which we state informally. Suppose we had a function f : {0,1}" x {0,1}* — {0,1}",
such that for a random w-bit string X from the source, the induced function f(-, X) (denoted
fx(+)) maps many non-witnesses to witnesses. Then we could define a new witness set
W' = {s|s € W or fx(s) € W} which is much larger than W, with high probability.

We could then recurse on this idea, constructing
WO = {s|s e WO or fx,(s) e WD},

The hope is that the W()’s will grow quick enough so that with high probability, W ®*) =
{0,1}" for k = O(log). This would allow us to test whether a € L simply by testing whether
0 € W), because if a ¢ L, then W*) = §. Now 0 € W) is equivalent to 0 € W1
or fx,(0) € W1 which is further equivalent to 0 € W*=2) or fx (0) € W*=2) or
fx, (00 € WE=2 or . (fx,(0)) € W*=2). Fleshing out the recursion completely, we
are left with the algorithm that tests whether any combination fx, o fx, o...o inl (0),
1<i1 <ig<...<i; <k, isin W. Observe that k = O(logr) implies a polynomial number
of queries.

For § > 1/2, we have a simple function f, namely a hash function mapping r bits
to 7 bits. This leads to the following simple algorithm: take 2kr bits from the source and
forms the 2r-bit numbers hq, ho, ..., hg, where k = O(logr). Treating the h; as elements
of a universal family of hash functions, it then forms the set P of potential witnesses as

follows:
P+ {0}
For i =1 to k do
P+ PUhy_;(P)

Here h(P) denotes {h(p)|p € P}.
Defining the non-witness sets N as the complements of the witness sets W ()
above, we see that

We can use Lemma 2.3 to analyze equation (4.1):

20

Lemma 4.3 E[|[N®|] < |[NG-D 227 4 |NCG-D|a(1/2=0)r,
Proof. Apply Lemma 2.3 with A = B = S; 1, I = O = {0,1}", and note that we are

interested in |S;_;| times the given probability. O

Theorem 4.1 For all § > 1/2, the algorithm given above will simulate RP.

Proof. By Remark 3.1, it suffices to show that with probability at least 1/2, N®) = for
k= 0O(logr). Let e =0 —1/2 and ¢ = 2". We assume that our RP algorithm is incorrect
with probability at most 1/128, and that ¢ > (16/€)%¢, i.e. choose r > (2/€)(4 —logy€). In
the beginning, the dominant term bounding E[|N®|] in Lemma 4.3 will be |N()|2/q. First
we show that when this is the dominant term, the N(9’s shrink rapidly, and then we show
the same for the other term.

While |N®| > ¢'~¢, we show inductively that with probability at least 3/4+1/2:2,
ING)| < q/22i+i+5. It is true for 4 = 0, and suppose it is true for i. Then using |[N®)| > ¢'~¢,
E[ING+D|] < 2IN®|2/q. Then, using Markov, if

[ND| < g/22 4145, (42)
then with probability at least 1 — 1/2/+3,
NG < 2 N2 /g < g2 05, (43)

Using the induction assumption on the probability of (4.2), we get that (4.3) holds with
probability at least 3/4+1/2¢+3, and the induction is complete. Therefore, this phase (when
IN®)| > ¢'~€) can only last log, rounds.

Now we view the phase where [N()| < ¢'~¢. Now E[|[N(+D|] < 2|N®|/gc. Using
Markov again, with probability at least 1 —2/¢%/2, |NG+D| < |[N(®)]|/¢¢/2. If these decreases
in the N@’s continue, then this phase can only last (1 — €)/(¢/2) < 2/e rounds. The
probability that the decreases continue is therefore bounded from below by 1 — (2/€)2/q/?.
Using €q/? > 16, we see that this probability is at least 3 /4.

Thus, the probability that both phases end as hoped is at least 1/2, and we are

done. O

4.2 General Case

For the general algorithm, note that the results in the previous section, or alter-

natively those of Section 3.2, imply that we may assume without loss of generality that

21

|N| < 27/8. This is because we can replace our original 7 by R in the above simulation
and W by the set of strings that produce at least one witness. The fact that the above
simulation works means that our new N is at most 2°.

The key idea for thinking about constructing suitable functions f : {0,1}" x
{0,1}* — {0,1}" in the general case was introduced in [Zul]. Imagine that if the inputs to
f are chosen randomly, i.e. the r-bit string uniformly from the set of non-witnesses and the
other bits according to a PRB-source, then the output is quasi-random within 2-%("), This
means that the output is a witness with reasonable probability. Substituting in the string
from our source, we obtain a function fx which maps random non-witnesses to witnesses
with reasonable probability. In other words, a large fraction of these non-witnesses will be
mapped to witnesses, as we want.

Observe that a larger N facilitates our construction of f, because this gives us
implicit access to higher-quality random bits. We will therefore first show how to construct
f if N is large, and then how to make progress when N is small.

To get such a function f when N is large, we make use of the Modified Leftover
Hash Lemma. Set ¢t = [r/(1+ d/3)], and u = r — ¢, so that u < §t/3. We now view our
r-bit non-witness as a hash function h mapping ¢-bit strings to u-bit strings. We then use
[7/u] t-bit blocks y1,...,yf,/q from the source, and the output of f is the first r-bits of
h(y1) o -+ oh(yr.y) (here o denotes concatenation). The Modified Leftover Hash Lemma
then implies that the output of f is quasi-random.

Thus we get a new set of non-witnesses N', where
N'={s € N|fx,(s) € N}. (4.4)
We now show

Lemma 4.4 If [N| < 20-9/87 then E[|N'[] < (1 + o(1))20-0/%"r,

Proof. We may assume without loss of generality that |N| = [2(1=9/8)7 |, Imagine that
s € N is picked uniformly at random, and view it as a hash function h. Using the Modified
Leftover Hash Lemma with T = {0,1}, A = the 2% possible values for y;, H = {0,1}", and
C = N, we see that (h, h(y;)) is quasi-random within /207/8 /220t/3 < 2-30/16 (using § < 1).
Repeating this and using Lemma 2.1 implies inductively that hoh(y;)oh(y2)o...oh(y;) is

quasi-random within i239/16, Hence the output of f is quasi-random within [r/t]239/16,

22

Multiplying the probability that this output lies in N by |N| yields

E[N']] < |NJ?27" + O(|N|2737/16) < (1 4 o(1))201-0/8)",

Corollary 4.1
PT’[|NI| S 2(175/8)(175/10)1“] Z 1 — 2751“/50.

Proof. Use Lemma 4.4 and Markov’s Inequality. O

We can now prove:

Theorem 4.2 For all § > 0, there is an algorithm that simulates RP using a d-source.

Proof. Since N’ is too small to give f desirable properties, we make progress not by
reducing N', but by reducing r. Let ' = [(1 — §/10)r]. We can map an r/-bit string to
an r-bit string simply by padding with 0’s on the front. This gives us new corresponding
witness and non-witness sets W” and N” in {0,1}", namely, an element is a witness in

{0,1}"" iff it is mapped to a witness in {0,1}". Moreover,

|NII| S |N/| S 2(175/8)(176/10) < 2(176/8)’!".

Thus, replacing r by " and N by N”, we are left with the same problem but the
size has decreased by a factor of (1 — §/10). Continuing in this manner, after O(logr/d)
stages we will be working over logarithmic size sets, for which we can check every element
(it will be more convenient to take the recursion only to logarithmic size sets, instead of to
constant size sets as one might expect). Note that Corollary 4.1 ensures that all reductions
in the size of N occur with high probability, as we get a geometric progression.

We still have one problem left: each stage needs good blocks of different lengths.
This was the main obstacle to improving the n©(°6™) algorithm of [Zul] to polynomial.
We get around this problem by introducing a new lemma about paths on expander graphs,
which allows us to find the good blocks without using brute force.

It suffices to get d/2-good blocks, simply by replacing 0 by 4/2 in the above
argument. Suppose at the ith stage we need a good block of length [;. We will get this
d/2-good block from the ith block of length r output by the PRB-source. Actually, the

23

proof will be easier if we assume we have k d-good r-bit blocks available to us, as implied
by Lemmas 4.1 and 4.2. We may assume without loss of generality that [;|r, for if it does
not, we may pad the ith r-bit block with 0’s until it does, and we will still have a §/2-good
block of length r (so we will have to replace ¢ by §/2).

To get the good block for the ith stage, let an adversary label 20%/2 of the I;-bit
strings as bad, so the rest are good. Subdivide a block of length r into b; = r/I; blocks
of length [;, and call a block of length r good if at least §/4 fraction of the sub-blocks are
good. Assuming I; > 4/6, Lemma 4.1 implies that less than 2°" r-bit strings of length r are
not good. Thus, this is a legitimate labelling, so by the techniques of Lemmas 4.1 and 4.2
we may assume we can get k blocks, where for all ¢ the ith block has at least §/4 fraction
of sub-blocks of length [; good.

To get one good block of each length, we could use brute force and try all possible

combinations of sub-blocks, one of each length. This, however, yields an r©{og7)

algorithm.
If there were only one good sub-block of each length, then we would have to use brute force;
however, we know that a constant fraction of the sub-blocks are good. We exploit this fact

by using the following lemma:

Lemma 4.5 Let G = (V,E) be an expander graph (directed or undirected) on n = |V|
nodes, such that every set of size n/2 has at least n/2 + an neighbors. For any k, let
Si,..., Sk be arbitrary subsets of V' such that |S;| > (1 — a)n. Then there exists a path

V1,...,U 0 G such that v; € S;.

Proof. By induction on k in the statement: there are at least n/2 endpoints vy in such
paths vq,...,vg. This is true for k = 1; if it is true for a given k, then any neighbor of an
endpoint that also lies in Sk is a possibility for vgy;. But the neighbor set is of size at

least n/2 + an, so its intersection with Sk is at least n/2. 0

Viewing the degree 7 expanders in [GG] as directed graphs (instead of bipartite
graphs), we see that these graphs have a = (2 — v/3)/4, as well as being explicitly con-
structible.

We apply the lemma as follows: Using n = r, we’d like to set .S; equal to the set
of good sub-blocks of the ith good block B;. However, we would then have a fraction d/4
of the sub-blocks in §;, whereas we want a fraction 1 — a. We therefore set n = r™, and

let S; represent m-tuples of sub-blocks, of which at least one is good, where m is chosen so

24

that (1 —6/4)™ < a. We also must work with a modulus, so more formally:
Si = {(s1,...,5m)|for some j, the s;(modr/l;)th sub-block of B; is good}.

We then don’t have to run our algorithm on all combination of sub-blocks, but only on ones
given by paths on the [GG] expanders. Since there are 7°(°87) paths of length O(logr) in

a degree 7 expander, and each such path contains mOUlogr)

combinations of sub-blocks, this
yields a polynomial time algorithm.

O
Remark 4.1 The time dependence on § is ro(é%log%), and R = O(rlogr/§3). This is
because there are O(logr/d) stages, so 20(1087/9) strings are produced for every sequence of
possibly good blocks. The dominant factor is the number of sequences of possibly good blocks:
each stage requires [r/t] = O(1/8) good blocks, so O(logr/8?) good blocks are needed in total.
In order to get this many good blocks, we must request O(logr/63) blocks from the source
(i.e. R = O(rlogr/§3), and try all sequences of length O(logr/8%). This gives (logr/53) =

logr/§2
1
5O(25% log 1)

. For each sequence of possibly good blocks, we must try all paths of m-tuples
log r/6?%) 20(1%1108%)

in an ezpander, which adds another factor of mO! = . Multiplying these

factors together gives the result.

25

Chapter 5

Simulating BPP

Our RP simulation consisted of two parts: Lemmas 4.1 and 4.2 reduced the prob-
lem to simulating RP using an (r,d) PRB-source, and the rest of the proof showed how to
simulate RP using an (r,4) PRB-source. Most of the difficulty in extending the previous
proof to BPP lies in this first reduction. For BPP, it is difficult to argue anything unless
all the blocks are good (good meaning essentially having small conditional probability of
being output). One bad block is enough to lose control over the majority of the output test
strings.

We solve this problem by considering several permutations, and arguing that most
of the permutations will have all “good” blocks. The argument requires more care than at
first appears, as we must argue first about initial segments being good, and then individual
blocks as being good. We use few permutations by using pairwise independence.

We first give an algorithm, Algorithm B, to simulate BPP, assuming we could
always get good blocks. Our algorithm will be essentially the same as the RP algorithm,
except that instead of using a function f : {0,1}" x {0,1}" — {0,1}", we use the same
construction to give an f : {0,1}" x {0,1}* — {0,1}?". There is now a way of associating
z € {0,1}" with 2 other r-bit strings: namely, compute f(z, X), where X is a good block
from the source, and split it into two r-bit strings z; and zs. In our recursion, the answer
we associate with x is the majority of the answers associated previously with x, 1, and x,.

Let N be the set of strings that give the wrong answer. Thus,
N’ = {z|at least two of z,x1,zs are in N}.

Using the fact that f(z, X) is quasi-random within 273 /16 if 3 is picked uniformly from N,

26

(and surely if z is picked uniformly from {0,1}" — N), we get

Lemma 5.1 If [N| < 2020/8) then B[N'|] < 2(1+0(1))(1-0/8)"r,

Proof. Similar to Lemma 4.4. Basically,
E[|N'|] < |N|Pr[z1 € N or x5 € N|z € N] +2"Pr[z; € N and 22 € N|z € {0,1}" — N]

< 2|N|2277‘ + O(|N|2735r/16) < 9(1+o(1))(1-4/8)%r
O

Given this lemma, the rest follows as in the RP case, once we can assume all
our blocks are good. The rest of the proof is devoted to showing that we can make this
assumption. The rest of this proof can also replace Lemmas 4.1 and 4.2 in our RP simulation,
but then our RP simulation would use #©(*/9) random bits, instead of O(rlogr).

We begin the reduction by reducing our problem to simulating BPP from the

following kind of source:

Lemma 5.2 Let S be a source outputting b blocks of length | = [3/5] one at a time,

controlled by an adversary with the following restrictions:

(i) the adversary must decide on-line whether to completely control the value of the output
block, or only to select a set of size > 20V/3 from which the block is chosen uniformly

at random;
(ii) the adversary must yield complete control on at least 6b/3 blocks.

Then an algorithm that simulates BPP using b blocks of length | from any such source S

also simulates BPP using bl bits from a §-source.

Proof. Divide the bl bits output from the J-source into b blocks of length [. By Lemma 4.1,
with high probability a fraction at least §/3 of the blocks will be 6/3-good. Once this fraction

occurs, we can build the two trees as in Lemma 4.2 to complete the proof. O

Because the blocks of length [will serve as components of other, bigger blocks,
we call them sub-blocks. We also call a sub-block that the adversary does not completely
control a §/3-random sub-block. Note how this compares with §/3-good: intuitively, they

correspond to the same idea, but the proofs will be easier using the ¢/3-random definition.

27

Assume without loss of generality that b is a prime power, e.g. a power of 2. We
will use b2 — b “permutations” (they will not really be permutations, but subsequences of
sub-blocks), which except for a slight modification is a probability space where Vb of the
sub-blocks are chosen pairwise independently. Namely, we work over the finite field F’ with
b elements, and for all (z,y) € (F — {0}) x F, we let the ith sub-block in our sequence
correspond to the element iz + y in F'. Note that because x # 0, all the sub-blocks in the
subsequence are different.

We would like to argue that for most such subsequences, all of the larger blocks,
each composed of many small sub-blocks, are good in the new, permuted order. The
problem with this is that a sub-block which was J/3-random in the old order may not
be §/3-random in the new order. For example, imagine two sub-blocks which are always
equal, but otherwise uniformly random and independent of all the other sub-blocks. Then
whichever sub-block appears first in the permuted string will be §/3-random, and the other
will not.

We therefore take a different approach. We first argue that with high probability,
all initial segments of length at least mg = 241 logr/6 = O(logr/6%) in the permuted string
will be good. We then show how to obtain good blocks from a source that outputs strings
with all initial segments good.

To do this first part, we first argue that for most permutations, all initial segments
contain many sub-blocks that were §/3-random in the unpermuted order; we then argue
that this implies that most permutations contain only good initial segments (in the new
permuted order). In fact, although it is true that all initial segments will be good, we will
only need to deal with initial segments with lengths m; = [mod'] for some 4, where d > 2

is a constant to be chosen later.

Lemma 5.3 For a fraction 1 — 1/logr of the subsequences, all initial strings of length m;

contain at least a fraction 6/6 of §/3-random sub-blocks.

Proof. When a subsequence is picked at random from a pairwise independent space, we
can use Chebychev’s inequality to bound the probability that a block of length m,; contains
at least 6/6 fraction of §/3-random blocks (see e.g. [CG1]), given that a fraction at least §/3
of all sub-blocks are §/3-random. Using the value of m;, this is at least 1 — 20+ /logr.
This probability only increases by removing the points from the space that we removed,

so this bound holds for our probability space. Adding the geometric series, the probability

28

that this holds for all non-negative integers 7 is at least 1 — 1/ logr. O

Lemma 5.4 The probability that at least 1—2/logr fraction of the subsequences have initial
segments that are 62/36-good for each length m; is at least 1 — 1/r.

Proof. The idea is that if an initial segment has many ¢/3-random sub-blocks, it will be
good. It is not this simple, however, because the adversary can choose which subsequences
to give few ¢/3-random sub-blocks after seeing some of the output blocks, i.e. if some
subsequences look like they will be bad anyway, she need not focus on these. To get
around this, we will give the adversary even more power: namely, she can decide which
subsequences to give few §/3-random sub-blocks after seeing how all subsequences would
have turned out with many ¢/3-random sub-blocks. Since the adversary can give at most
1/ log r subsequences few §/3-random sub-blocks, we need only bound the probability that,
if every subsequence contained many d/3-random sub-blocks, that at least 1/logr of them
would have a §2/36-bad initial segment of length m.

If an initial segment of length m; has at least §/6 fraction of §/3-random sub-
blocks, then the probability of this initial segment taking on a specific value is at most
9—0"mi/18 Thus, the probability it is 62/36-bad is at most 20°mi/36 times this value, or
9-07mi/36 The probability that a subsequence has a bad initial segment for some i is at
most the sum of these, which is at most 2- 907 mo/36 < 2/r?, using the value of my in terms
of [and [> 3/8. Thus, the expected fraction of bad subsequences is at most 2/r2, so by
Markov the probability this fraction exceeds 1/logr is at most 2logr/r? < 1/r. a

For ease of reading, redefine ¢ as 62/36, so now we know that for most subsequences,
all initial segments of length m,; are d-good. Let us focus now on these subsequences. We
now explicitly set the d in the definition of m;; namely d = 2/6 so m; = [mg(2/9)].
We next show that the initial segments of length m; being d-good implies that the block
containing bit positions m; + 1 through m;; is §/2-good. For fix 20(mit1=mi)/2 had strings
for such a block; even allowing all 2™ strings to be bad for the initial segment causes
omi+o(mis1—mi)/2 < 90mit1 pogsibilities for bad strings in the initial segment of length Mit1.
Thus, we can force a d-good initial segment of length m; 1 to lie outside such a set.

Again to ease the comparison to previous lemmas, redefine ¢ as §/2. Once we have
d-good, disjoint blocks, we can select the smaller size blocks that we will need by the same

process of picking sub-blocks in a pairwise independent manner. Our algorithm needs good

29

blocks of sizes cr,er(1 — §/8),cr(1 — §/8)%,...,mo = O(logr/6%); we rewrite these block
lengths as approximately I; = mqo(1 — §/8)7%. Our algorithm needs O(1/d) good blocks
of each size. Picking in the pairwise independent manner, the probability that a fraction
1 — (1 —§/8)"/klogr of the blocks of size [; are 6%/36-good is at least 1 — 1/r. Thus, with
high probability a fraction 1 —0(1/6) (1 —0/8)¢/logr = 1—0O(1/6* logr) of the sequences
of different size blocks contain all good blocks. Because Algorithm B using only good blocks

always outputs the right answer, we have:

Theorem 5.1 For all § > 0, there is an algorithm that simulates BPP using a 0-source.

30

Chapter 6

Extracting Almost-Random Bits

6.1 PRB-Sources

The first source we consider is the PRB-source of Chor-Goldreich. We show how
to extract almost-random bits at close to optimal rates in two situations. We first define

almost-random and rate:

Definition 6.1 A sequence of bits by ... by is almost-random if the probability distribution

w(1)

on by ...by is quasi-random within n~ Thus almost-random bits are indistinguishable

from perfectly random bits by polynomial-time machines.

Definition 6.2 The rate at which an algorithm outputs almost-random bits is

of almost-random bits output

total # of bits used from sources

Thus, the optimal rate from several (/,d) PRB-sources is 0.

The first situation where we can extract bits is when we have two sources, one
low quality (i.e. small §) and the other high quality (i.e. large §), but we can use very few
bits, say O(log2 n), from this second source. The second is when we have three low-quality
sources.

This first situation is useful if we believe that we have a small number of reasonable
quality bits, such as some of those from the RAND table. We could use a small number
of the bits from the RAND table for the lifetime of our computer, and the algorithm is so
simple that it should be practical.

31

Before beginning our proofs, we follow Chor and Goldreich by considering the

worst-case sources, flat sources:
Definition 6.3 (CG2) An (l,0) PRB-source is flat if for alli and all l-bit strings yi,. .., yi,

Priz; = yilz1 = y1,...,zic1 = yi1] =27 or 0.

Theorem 6.1 (CG2) An algorithm A extracts almost-random bits from any t (I,5) PRB-
sources if and only if A does so from any t flat (I,6) PRB-sources.
We can now prove the following theorem, which applies to the first situation above

by taking k = log? n and €(n) equal to a small constant.

Theorem 6.2 Suppose we wish to output n bits quasi-random within 2% from an (1,6)-

PRB source at a rate § — €(n). Let s = 6(?1) (k +logn), and assume | < s. Then we need
only 2s bits from an independent (I',1 — €(n)/3)-PRB source, where I' < 2s.

Proof. Assume w.l.o.g. that both sources are flat and that [= sl’ = 2s. View the bits
from the high quality source as a hash function h mapping s bits to ¢ = (§ — €(n))s bits;
say the source picks h uniformly at random from some subset C' of the hash functions.
Let the blocks from the low quality source be z1,...,z,,, where m = n/t. We claim that
h(z1),...,h(zy) is quasi-random within 27%. This follows from the following lemma.

This lemma is a generalization of a similar lemma in [IZ], and essentially strength-

ens related lemmas in [Va2] and [CG2]:

Lemma 6.1 Let z1,...,xz) be [-bit block outputs from an (I,0) PRB-source. Pick h uni-
formly from o universal family of hash functions mapping [bits to dl — 2e bits. Then the
distribution (h,h(z1),...,h(z)) is quasi-random to within k27°.
Proof. Let s = §l — 2e, so |H| = 2/**. We use boldface letters to denote random variables,
and denote

p(hyz1,...,2)) = Prlh = h,h(x1) = 21,..., h(x¢) = 2],

q(z1,...,2¢) = Prixs = z1,...,X¢ = x¢] = 90t

if 1,...,2; is a possible output from our flat PRB-source.

32

Our proof is by induction on k. The case k = 1 follows immediately from the
Leftover Hash Lemma. Now suppose it is true for a given k&, i.e. that
ST Iplhy 2. zg) — 27 CFHERDS) < opoe,
h,21,..02E

Then using the triangle inequality,

S plhyar, .. 2ppn) — 27 HHEFD9)

Rzt 241
< Z |p(hvzl7"'7zk+1)_p(h7zl7"'7zk)2_s|+ Z |p(h7z17"'7zk)2_8_2_(l+(k+2)8)|'
o212k 41 o212k 41
Noting that there are 2° possible zx,1’s bounds the second term by 2k27¢, using the induc-

tive assumption. To bound the first term, we use that

p(h,zl,...,zk) = Z P’r’[h: h]Q($17~~~,$k) = q(xh'”,];k)Q—(H-s)
()= s
and
plhyz1,. .y zke1) = Y, Prih=nhlg(1,...,zx)Prib(Xei1) = zgga|xa = o1, .. X = 23]
T,y Ty

(Vi)h(z;)=2i

Using these two identities and the triangle inequality, we bound the first term by

Z Z lg(z1,...,25)Prlh = h)Prlh(xk+1) = 2k+1|X1 = 21, ..., Xk = zk|—q(21, . ..

o2l yees gl T1 oo th (@) =21

= Y q@1,...,z5) Y |Prih=hPr{h(Xis1) = zpsalxs = 1, xi = 2] - 27),
T1yeen T, hyZk41

But the second summation is bounded above by 2-27¢, since it is twice the quasi-randomness

of (h, h(xk1)) conditional on x3,...,x. Using 3°,, . q(71,...,2) = 1 bounds the first

term by 2 -27¢ and proves the inductive claim.

a

In order to generate almost-random bits from three low-quality sources, we proceed

as in [CG2]. We use their lemma:

Lemma 6.2 (CG2) For | = O(loglogn) and all 6 > 0, in polynomial time we can
transform n bits from each of two independent (I,0) PRB-sources into Q(n) bits from an

(O(loglogn),1 — 1/logn) PRB-source.

33

To prove this, they show by a counting argument that there exists such a trans-
formation, and because [is so small this function can be found. We are now ready to

prove:

Theorem 6.3 For | = O(loglogn) and all 6 > 0, in polynomial time we can extract n

almost-random bits from three independent (I,0) PRB-sources at a rate 6 — o(1).

Proof. By Lemma 6.2, we can use O(log® n) bits from two sources to get O(log® n) bits from
an (O(loglogn),1 —1/logn) PRB-source. Then use Theorem 6.2 with these O(log®n) bits
and the third source to output almost random bits at a rate § —e(n), where e(n) = 3/logn.

O

6.2 J-Sources: Case 6 > 1/2

First we show that it is impossible to extract an almost-random bit from one
d-source. This has been shown for weaker models, such as the semi-random sources of [SV],

but in our case the proof is particularly simple:

Lemma 6.3 For any § < 1 —1/n, it is impossible to extract a bit from n bits of a 0-source

that takes on both values 0 and 1 with non-zero probability.

Proof. Suppose we had a function f : {0,1}" — {0,1} that claimed to do the above.
Suppose without loss of generality that f takes on the value 0 at least as often as the value 1.
Then any source with § < 1 — 1/n could output only values in f1(0), contradicting the

claims about f extracting a non-trivial bit. O

For § > 1/2, from two sources, we can extract almost-random bits at a constant
rate. From a constant number of sources, using the techniques of the previous section we

can extract almost-random bits at nearly the optimal rate.

Theorem 6.4 Suppose we have two independent d-sources with parameters 61 and 0o with
01 + 02 > 1. Then using O(n) bits from the two sources, there is an algorithm that extracts

n bits that are quasi-random within 2=,
Proof. We view the first source as a hash function h from m b