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Abstract

Motivated by a problem of filtering near-duplicate Web documents, Broder, Charikar,
Frieze & Mitzenmacher defined the following notion of e-approzimate min-wise indepen-
dent permutation families. A multiset F of permutations of {0,1,...,n — 1} is such a
family if for all K C {0,1,...,n — 1} and any z € K, a permutation 7 chosen uniformly
at random from F satisfies

1 €
| Prfmin{r(K)} = n(2)] - o= | < .
K]~ K]
We show connections of such families with low discrepancy sets for geometric rectangles,
and give explicit constructions of such families F of size n®(V18™) for ¢ = 1/p®0),

improving upon the previously best-known bound of Indyk. We also present polynomial-

size constructions when the min-wise condition is required only for |K| < 90(log?/® "), with
e > 2~ 0(log”n),
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1 Introduction

Constructing pseudorandom permutation families is often more difficult than constructing pseu-
dorandom function families. For example, there are polynomial size constructions of k-wise
independent function families for constant k& [8, 9, 1, 12]. On the other hand, although there
are polynomial-size 3-wise independent permutation families (see, e.g. [14]), there are only ex-
ponential size constructions known for higher k. In fact, the only subgroups of the symmetric
group that are 6-wise independent are the alternating group and the symmetric group itself;
for 4-wise and 5-wise independence there are only finitely many besides these (see [4]). There
are constructions of almost k-wise independent permutation families with error ¢ = O(k?/n)
[13], again not as good as is known for function families.

We address a different type of pseudorandom permutation family, called a min-wise indepen-
dent permutation family. Motivated by a problem of filtering near-duplicate Web documents,
Broder, Charikar, Frieze & Mitzenmacher [3] defined them as follows:

Definition 1.1 ([3]) Let [n] denote {0,1,...,n—1}, and S, denote the set of permutations of
[n]. A multiset F contained in S, is called min-wise independent if for all K C [n] and any x €
K, when a permutation 7 is chosen uniformly at random from F we have that Primin{n(K)} =
7(z)] = |—1‘ (m(K) denotes the set {m(y):y € K}.)

While F = S, of course satisfies the above, even indexing from such an F is difficult, as some
applications have n of the order of magnitude of 2% [3]. Furthermore, it is shown in [3] that any
min-wise independent family must have exponential size: more precisely, its cardinality is at
least lem(1,2,...,n) > e"°M™_ (This lower bound of lem(1,2,...,n) is in fact tight [15].) This
motivates one to study families that are only approrimately min-wise independent; moreover, in
practice, we may also have an upper bound d on the cardinality of the sets K of Definition 1.1,
such that d < n. Thus, the following notion is also introduced in [3]; we use slightly different
terminology here.

Definition 1.2 ([3]) Suppose a multi-set F is contained in S,; let w be as in Definition 1.1.
F is called an (n,d,€)-muwif (for d-wise e-approximate min-wise independent family) if for all
K C[n] with |[K| <d and any © € K, we have

| Prlmin{r(K)} = (2)] - % < e

Using a random construction, Broder et. al. showed the ezistence of an (n,d, ¢)-mwif of
cardinality O(d?log(2n/d)/€e?) [3]. Indyk presented an explicit construction of an (n, n, €)-mwif
of cardinality n?(°8(t/€)) in [7]. In this paper, we show a connection between the construction
of approximate min-wise independent families and the construction of low discrepancy sets for
geometric rectangles, and use this connection to give a new construction of an (n, d, €)-mwif.

To state our main result we first need some definitions. Let m, d and n be integers with
d < n. We denote by GR(m, d,n) the set of (geometric) rectangles [a1,by) X [az, ba) X « - - [an, by)
such that:

e For all i, a;,b; € {0,1,...,m — 1} with a; < b;
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e a; =0 and b; = m — 1 simultaneously hold for at least n — d indices i (i.e., the rectangle
is “nontrivial” in at most d dimensions).

Given such a rectangle R € GR(m, d, n), its volume vol(R) is defined to be (IT/—,(b; — a;))/m™.
A set D C [0,m)" is called a d-discrepant set for GR(m, d, n) if:

IDNR|

VR € GR(m,d,n), | ]

vol(R) | < 4. (1)

For an element r = (ry,rq,...,7r,) € [0,m)", define I'(r) to be the induced permutation 7, € S,
such that for any 0 < ¢,j <n—1, (i) < m.(j) if and only if r; < rj, or r; = r; but i < j. For
a subset D C [0,m)", I'(D) is defined to be the multiset of I'(r) where r € D.

Our main theorem is the following:

Theorem 1.1 Let m be arbitrary. Suppose D C [0, m)" is any §-discrepant set for GR(m, d,n).
Then for any + < a <1, ['(D) is an (n,d, €)-mwif, where ¢ = (a + 2)d>.

[0}

Lu [11] gave an explicit construction of d-discrepant sets for GR(m, d, n) of cardinality

(mn)OW) . (1/8)0/0gmax 24/ 108(1/5)).

Therefore, setting m = 2d*/¢, « = 1/m and § = 1/m? in the main theorem and invoking Lu’s
construction, we obtain the following corollary:

Corollary 1.1 There ezists an explicit construction of an (n,d, €)-mwif of cardinality

L = nOW . (d/e)0W/loslmax2.d/10g(1/I)

2/3
"), Also, when d = n, our

Note that this size is poly(n) if d < 20006”n) and ¢ > 2-Olog
bound is better than that of [7] if e < 27°V!6™ where ¢y > 0 is a certain absolute constant.
We remark that Lu’s construction builds on earlier work of [2, 5, 6, 10]. Given log L random
bits to index a random element 7 of the permutation family guaranteed by Corollary 1.1, and

given any i € [n], we can deterministically construct m(7) in time polylogarithmic in L.

2 Proof of Main Theorem

Fix an arbitrary set K C [n] of any size k < d, and choose any x € K. We want to show that

| Primin{r(K)} = 7(z)] - - | <

€
k,

| =

where 7 is chosen uniformly at random from I'(D).

Assume without loss of generality that ¢t = 1/a and am are integers. Given z and K, we
will define a sequence of pairwise disjoint rectangles {R; = R;(K,x) : 1 < i <t — 1} such that
the permutations corresponding to points in R = U; R; all satisfy min{n(K)} = m(x), and such
that vol(R) is approximately % Using the fact that D is a good discrepant set for each R; we
will conclude that T'(D) has the required property.
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We define R; as follows.

R, ={(r,re,....m) | (i—1am <r, <iam; iam <r, <mforalye (K — {z});
and 0 <7, <mfor z ¢ K}.

The following facts are easily seen:
. Forany 1 <:i<j<t—1 R,NR; = ¢.
2. vol(R;) = a(1 — ia)*~1.
3. For any 7 € I'(R;), min{n(K)} = 7(z).

Define R = U!_[ R;. Using the first two facts, we can lower bound the volume of R as follows:

wol(R) = 3 vol()
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Since this holds for any # € K, an upper bound on this probability can be derived as follows:

Primin{r(K)} ==(z)] < 1—(k— 1)(% — (a+ %))
< % + k(o + g)

Since k < d, this completes the proof of the theorem.

Acknowledgments. We thank Andrei Broder and Michael Mitzenmacher for helpful discus-
sions. We also thank Leonard Schulman and Monica Vazirani for the references about k-wise
independent permutations and for interesting discussions about them. Our thanks also to the
RANDOM ’99 and journal referees for their helpful comments.

References

[1] N. Alon, L. Babai, and A. Ttai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms (7), 1986, pp. 567-583.

[2] R. Armoni, M. Saks, A. Wigderson, and S. Zhou. Discrepancy sets and pseudorandom
generators for combinatorial rectangles. In: Proc. IEEE Symposium on Foundations of
Computer Science, 1996, pp. 412-421.

3] A. Z. Broder, M. Charikar, A. Frieze and M. Mitzenmacher. Min-wise independent per-
mutations. In: Proc. ACM Symposium on Theory of Computing, 1998, pp. 327-336.

[4] P. J. Cameron. Finite permutation groups and finite simple groups. Bull. London Math.
Soc. (13), 1981, pp. 1-22.

[5] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovi¢. Approximations of general
independent distributions. In: Proc. ACM Symposium on Theory of Computing, 1992, pp.
10-16.

(6] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In: Proc. ACM Symposium on Theory of Computing, 1994, pp. 356-364.

[7] P. Indyk. A small approximately min-wise independent family of hash functions. In: Proc.
ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 454-456.

[8] A. Joffe. On a set of almost deterministic k-independent random variables. Annals of
Probability 2(1), 1974, pp. 161-162.

9] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set
problem. Journal of the ACM (32), 1985, pp. 762-773.

[10] N. Linial, M. Luby, M. Saks, and D. Zuckerman. Efficient construction of a small hitting
set for combinatorial rectangles in high dimension. Combinatorica (17), 1997, pp. 215-234.



[11] C.-J. Lu. Improved pseudorandom generators for combinatorial rectangles. In: Proc. In-
ternational Conference on Automata, Languages and Programming, 1998, pp. 223-234.

[12] M. Luby. A simple parallel algorithm for the maximal independent set problem. STAM J.
Comput. 15(4), 1986, pp. 1036-1053.

[13] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-
Rackoff revisited. J. of Cryptology (12), 1999, pp. 29-66.

[14] E. G. Rees. Notes on Geometry, Springer Verlag, 1983.

[15] Y. Takei, T. Itoh and T. Shinozaki. An optimal construction of exactly min-wise indepen-
dent permutations. Technical Report COMP98-62, IEICE, 1998.



