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Abstract. Collective coin-flipping is the problem of producing common random bits in a dis-
tributed computing environment with adversarial faults. We consider the perfect information model:
all communication is by broadcast and corrupt players are computationally unbounded. Protocols
in this model may involve many asynchronous rounds. We assume that honest players communicate
only uniformly random bits. We demonstrate that any n-player coin-flipping protocol that is resilient
against corrupt coalitions of linear size must use either at least [1/2 − o(1)] log∗ n communication

rounds or at least [log(2k−1) n]1−o(1) communication bits in the kth round, where log(j) denotes the
logarithm iterated j times. In particular, protocols using one bit per round require [1/2−o(1)] log∗ n
rounds. These bounds also apply to the leader election problem. The primary component of this
result is a new bound on the influence of random sets of variables on Boolean functions. Finally, in
the one-round case, using other methods we prove a new bound on the influence of sets of variables
of size βn for β > 1/3.

Key words. perfect information model, collective coin-flipping, leader election

AMS subject classifications. 68Q17, 91A15, 05D40

PII. S0097539700376007

1. Introduction. Collective coin-flipping is the problem of producing a com-
mon random bit in a distributed computing environment with adversarial faults. We
consider the perfect information model introduced by Ben-Or and Linial [5], which
can be informally described as follows. A protocol in this model consists of a sequence
of rounds. In each round, each player privately generates a uniformly random string
of bits of some specified length (possibly 0) and broadcasts the string. Each broad-
cast is received by all players and the identity of the sender is known with certainty.
The round ends after all broadcasts are received. After the completion of all rounds,
the outcome of the protocol is computed separately by each player as a prespecified
function of all the values broadcast during the protocol; for the coin-flipping problem
the outcome is a single bit. A protocol Π is said to be an (n, r, �)-protocol if n is the
number of players, r is the number of rounds, and each player broadcasts at most �
bits in each round.

Faults are modeled by the presence of an unknown set of b corrupt players who
collude in order to bias the outcome. Players are assumed to be computationally
unbounded. In addition, the system is not able to enforce perfect synchrony within a
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round; thus in each round, the corrupt players may wait to see the broadcasts of the
other players before selecting their strings.

While not necessary for previous upper bounds, we strengthen our lower bounds
by assuming that corrupt players may cheat only in ways that are undetectable to
the other players. This means that when the protocol specifies that such a player
broadcast a bit string of a given length, he must do so; however, he may cheat by
broadcasting a string that he chooses rather than a random string.

The simplest protocol is one that designates a single player to flip a coin, the
value of which is the outcome of the protocol; of course, this is unsatisfactory if
that player happens to be faulty. More generally, an (n, 1, 1)-protocol is defined by
a Boolean function f : {0, 1}n → {0, 1}; each player i broadcasts a bit ri and the
outcome is f(r1, . . . , rn). Throughout the paper we use the terms Boolean function
and (n, 1, 1)-protocol interchangeably.

The primary goal in designing a protocol is to ensure that it can tolerate as many
cheaters as possible.

Definition 1.
1 Let Π be a coin-flipping protocol for n players, and let γ ∈ (0, 1/2].

(a) For B ⊆ [n], Π is (B, γ)-resilient if for any strategy of the players in B,

γ ≤ Pr[Π has outcome 1] ≤ 1 − γ,

where the probability is taken with respect to the random bits generated
by the players outside of B.

(b) Π is (b, γ)-resilient for an integer b ≤ n if it is (B, γ)-resilient for all B
with |B| ≤ b.

2. Let Π = (Πn : n ≥ 1) be a sequence where Πn is an n-player protocol, and
let b(n) be a function mapping n to an integer b(n) ≤ n. We say that Π is
b(n)-resilient if there exists γ > 0 (independent of n) such that for all n, Πn

is (b(n), γ)-resilient.
For example, in the case of (n, 1, 1)-protocols, the parity function,

∑n
i=1 ri mod

2, is not even 1-resilient, while the majority function is c
√
n-resilient for any pos-

itive c. Ajtai and Linial [1] constructed a Boolean function that is Ω(n/ log2 n)-
resilient. Kahn, Kalai, and Linial, in a 1988 tour de force, proved an upper bound on
the resilience of Boolean functions.

Theorem 2 (see [13]). If b(n) = ω( n
log n ), then no sequence (fn : n ≥ 1) is

b(n)-resilient.
We emphasize that this bound applies only to (n, 1, 1)-protocols. Indeed, Alon

and Naor [2] showed that there are protocols using n rounds that are Ω(n)-resilient,
and this was followed by a sequence of papers giving more efficient protocols with
linear resilience. In what follows log(k)(n) denotes the maximum of 1 and the kth

iterated base 2 logarithm, and log∗ n is the least integer k such that log(k)(n) = 1. The
most efficient known protocol is that of [16], requiring log∗ n + O(1) rounds; players

send messages of length O(log(k) n) during the kth round. The protocol achieves βn-
resilience for any β < 1/2. (As noted in [17] no protocol can be n/2-resilient.) This
protocol can be modified to yield a one bit per round protocol with

[
1 + o(1)

]
log n

rounds. Subsequently, Feige [9] gave a simpler protocol with similar properties.
Despite rapid progress in our understanding of protocols for the problem, very

little beyond Theorem 2 was known on the negative side. The major contribution
of this article is an extension of Theorem 2 to protocols with many rounds. We will
prove the following theorem.
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Theorem 3. Let Π = (Πn : n ≥ 1) be a sequence of protocols, where Πn is an
(n, r(n), 1)-protocol for r(n) ≤ 1

2 log∗ n− log∗ log∗ n. Then
1. Πn is not Ω(n)-resilient and
2. if

b(n) = ω

(
(r(n))2

log(2r(n)−1) n
· n
)

,

then Π is not b(n)-resilient.
For instance, when r(n) = 1 this reduces to Theorem 2, and when r(n) = 2 it

implies that no (n, 2, 1)-protocol can be ω(n/ log log log n)-resilient.
We extend the notation above to describe protocols with variable communication

complexity: a protocol Π is said to be an (n, r, ��)-protocol if n is the number of players,
r is the number of rounds, and no more than �k bits are broadcast by any player in
the kth round, where �� = (�1, . . . , �r). We will prove that the conclusion of Theorem 3
holds even if we relax the requirement that each player sends only one bit per round.

Theorem 4. There is a function η : N → [0, 1] with η(n) = o(1) so that for any

sequence Π = (Πn : n ≥ 1) of protocols, where Πn is an (n, r(n), ��)-protocol with

r(n) ≤ 1

2
log∗ n− log∗ log∗ n and �k(n) ≤ (log(2k−1) n)1−η(n),

Πn is not Ω(n)-resilient.

Recall that current upper bounds provide (n, log∗ n+O(1), ��)-protocols which are

linearly resilient, where �k = O(log(k) n).
The leader election problem is that of selecting a “leader” among n players so

that the probability that any coalition (of appropriate size) can elect one of its own
members is at most 1 − ε for a constant ε > 0 independent of n. Adopting the
above model, the notion of resilience may be extended to this scenario. Collective
coin-flipping may be reduced to leader election at the cost of an extra round: the
leader may flip a fair coin. Our bounds shall then naturally apply to this problem as
well. For a more detailed discussion of coin-flipping, leader election, and the perfect
information model, see [7, 14].

Section 2 gives definitions, notation, and preliminary facts. The two main theo-
rems are proved in section 3 and section 4. In section 5 an observation is made about
the behavior of large linear sized coalitions. We conclude with some open questions.

2. Preliminaries.

2.1. General notation. Throughout, lnx denotes the natural logarithm and
log x the logarithm base 2. To avoid logarithms of negative numbers, iterated loga-
rithms are defined inductively as follows: for x ≥ 1, log(0)(x) = x, and for k ≥ 1,

log(k) x =

{
1 if log(k−1) x < 2,

log
(

log(k−1) x
)

otherwise.

For x ≥ 1, define log∗(x) to be the smallest natural number k for which log(k) x = 1.
For a positive real number y and integer k the tower function T(k; y) is defined

by

T(0; y) = y, and

T(k; y) = 2T(k−1;y) for k > 0.
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Observe that for any y ≥ 1, k ≤ �, log(k)(T(�; y)) = T(�− k; y).
For an integer n, we denote the set {1, . . . , n} by [n]. For J ⊆ [n], a finite set

X, and α ∈ XJ , C(α) denotes the set of all points x ∈ Xn such that xj = αj for all
j ∈ J . If α ∈ XJ and β ∈ X [n]\J , then [α : β] denotes the unique point of {0, 1}n

belonging to C(α) ∩ C(β).
If S is a set, the notation x ∈U S indicates that x is selected uniformly at random

from S.

2.2. Coin-flipping protocols and influence. We want to formalize the defi-
nition of protocol given in the introduction. We below define (n, r, ��)-protocols and a
number of related notions; (n, r, �)-protocols, where communication is constant across
rounds, are covered as a special case. For an (n, r, 1)-protocol Π we suppress the third
index and simply say that Π is an (n, r)-protocol.

Formally, an (n, r, ��)-protocol is a function

Π : ({0, 1}
1)n × · · · × ({0, 1}
r )n → {0, 1} .

Such a protocol is executed in r rounds. In the presence of a set B ⊂ [n] of bad
players, the protocol operates as follows. In round i, the players in [n] \ B select

αi ∈ ({0, 1}
i)[n]\B uniformly at random. Then, depending on α1, . . . , αi, the players

in B choose their values. Formally, an (n, r, ��)-strategy for B is a sequence S =
(S1, S2, . . . , Sr) of functions where

Si :
(
{0, 1}
1

)[n]\B

× · · · ×
(
{0, 1}
i

)[n]\B

→
(
{0, 1}
i

)B

.

The function Si specifies the choices of the bad players in round i as a function of the
choices of the good players in the first i rounds. The outcome of protocol Π, with bad
player set B playing strategy S, is a function of the sequence

�α = (α1, . . . , αr) ∈ ({0, 1}
1
)[n]\B × · · · ×

(
{0, 1}
r

)[n]\B

of the random coins of the good players, which is denoted Π(�α;S) and is defined to
be

Π
(
[α1 : S1(α1)], . . . , [αr : Sr(α1, . . . , αr)]

)
.

Definition 5. For a protocol Π, B ⊆ [n], and strategy S,
• p1

Π(B;S) denotes the probability that Π(�α;S) = 1 if

�α ∈U

({0, 1}
1
)[n]\B × · · · × ({0, 1}
r

)[n]\B
;

• p1
Π(B) is the maximum of p1

Π(B;S) over all strategies S;
• p1

Π = p1
Π(∅), the natural probability of Π, is the probability that the outcome

is 1 if there are no bad players;
• I1

Π(B), the influence of B towards 1, is defined to be p1
Π(B) − p1

Π;
• p0

Π(B;S), p0
Π(B), p0

Π, and I0
Π(B) are defined analogously;

• IΠ(B), the influence of B on Π, is defined to be

I1
Π(B) + I0

Π(B).
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An (n, 1)-protocol corresponds to a Boolean function f : {0, 1}n → {0, 1}, and
we typically use the letter f (instead of Π) for such a protocol. It is not hard to see
that p1

f (B) is the probability, with respect to α ∈U {0, 1}[n]\B , that 1 ∈ f(C(α)) and
that If (B) is the probability that f is not constant on C(α). Furthermore, if |B| = 1,
then I1

f (B) = I0
f (B).

The following result, observed in [6] (cf. Proposition 2.2 of [13]), implies that the
most resilient one-round protocols are given by Boolean functions that are monotone.

Proposition 6. For any Boolean function f , there exists a monotone Boolean
function g on the same set of variables for which

1. p1
f = p1

g and

2. for all B ⊂ [n], I1
f (B) ≥ I1

g (B) and I0
f (B) ≥ I0

g (B).
Finally, we need a variant of a fact first noted in [10] and based on a result in

[13], which asserts that if no variable in a Boolean function has large influence, then
the average influence of a variable cannot be too small. For completeness, we include
a proof.

Lemma 7. Let γ ∈ (0, 1
2 ) and θ ∈ (0, 1

8 ). Let f : {0, 1}n → {0, 1} be a Boolean
function with p1

f ∈ (γ, 1 − γ). If If ({i}) ≤ θ for each i ∈ [n], then

∑
i∈[n]

If ({i}) ≥ γ log( 1
θ )

20
.

Proof. Let v̄ ∈ R
n denote the vector with vi = If ({i}). For p > 0, the lp norm

of v̄, denoted ‖v̄‖p, is defined to be (Sp)1/p, where Sp =
∑ |vi|p.

By complementing if necessary, we may assume that p1
f ≤ 1/2. Since the function

f is Boolean and p1
f ≥ γ, [13, eq. (3.4.1)] asserts that for any δ ∈ (0, 1) and t ≥ 1,

δ−tS 2
1+δ

+ t−1S1 ≥ γ

2
.(2.1)

Inequality (2.10.1) of Hardy, Littlewood, and Pólya [11] asserts that

Sr ≤ (Sq)
s−r
s−q (Ss)

r−q
s−q

for 0 < q < r < s, which is equivalent to

(Sr)
s−q
s ≤ (Sq)

s−r
s (‖v‖s)r−q.

Setting q = 1 and r = 2
1+δ and letting s tend to ∞, we obtain

S 2
1+δ

≤ S1θ
1−δ
1+δ .

Substituting this into the inequality (2.1) and setting δ = 1/2 we get(
2tθ

1
3 +

1

t

)
S1 ≥ γ

2
.

Choose t such that θ = 2−3t/t3 (noting that t > 1 since θ < 1/8). Then the previous
inequality implies S1 ≥ tγ/4. Since 2−3t/t3 ≥ 2−5t for t ≥ 1, we have

t ≥ 1

5
log

(
1

θ

)
,

and therefore

S1 ≥ γ log 1
θ

20
.
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2.3. A tail bound for submartingales. Our main theorems are proved by
considering a certain stochastic process which, for a Boolean function, selects a set of
variables likely to have large influence. Our analysis of this stochastic process involves
a tail bound for submartingales, which we record below.

Definition 8. A submartingale is a sequence of real valued random variables
Z0, Z1, . . . for which E [Zi | Zi−1] ≥ Zi−1.

We were unable to find the exact form of the following tail bound in the literature,
so we have included a proof. The basic method is developed in [8, 4, 12]. Our
treatment follows [3, 15].

Lemma 9. Let (Zi : i ∈ {0, . . . , n}) form a submartingale with Z0 = 0. Define
Xi = Zi − Zi−1 for i ∈ {1, . . . , n} and assume that Xi ∈ [0, 1] and E[Xi | Zi−1] ≥ µi.
Setting µ =

∑
i µi and Z = Zn,

Pr[Z < (1 − δ)µ] < e−
δ2µ
2

for all δ > 0.
Proof. Observe that for any α > 0,

Pr[Z < (1 − δ)µ] = Pr
[
e−αZ > e−α(1−δ)µ

]
<

E
[
e−αZ

]
e−α(1−δ)µ

.

Letting �(x) = 1 + x(e−α − 1), we have e−αx ≤ �(x) for all x ∈ [0, 1] because the
exponential function is convex. For any [0, 1] valued random variable Y ,

E
[
e−αY

] ≤ E [�(Y )] = 1 + E[Y ](e−α − 1).

By induction, we compute

E
[
e−αZk

]
= E

[
e−αZk−1 · e−αXk

]
= E

[(
e−αZk−1

)
E

[
e−αXk Zk−1

]]
≤ E

[(
e−αZk−1

) (
1 + E

[
Xk Zk−1

]
(e−α − 1)

)]
≤
∏

i

(1 + µi(e
−α − 1)) < e

∑k
i µi(e

−α−1).

Hence

Pr
[
Z < (1 − δ)µ

]
<

eµ(e−α−1)

e−α(1−δ)µ
.

Setting α = ln( 1
1−δ ), we have

Pr
[
Z < (1 − δ)µ

]
<

(
e−δ

(1 − δ)(1−δ)

)µ

≤ e−
δ2µ
2 ,

since (1 − δ)(1−δ) > e−δ+ δ2

2 .

3. Proof of Theorem 3. We begin by considering (n, r)-protocols; each round
consists of a single bit broadcast by each player. Fix the integer r. We say that a
protocol Π is α-nontrivial if the natural probability of Π is at least α, i.e., p1

Π ≥ α,
terminology that we apply also in the multibit case. By complementing the output
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if necessary, we may assume that the protocol is 1/2-nontrivial. We want to show
that if Π is an (n, r)-protocol, then for n sufficiently large there is a set B of b � n
players so that B can almost always force the outcome to 1. For r = 1 this follows
from Theorem 2.

We illustrate the ideas for r > 1 by looking at the two round case. By separating
the inputs associated with each round, a two round protocol may be viewed as a
function to functions:

Π : {0, 1}n → {g : {0, 1}n → {0, 1}} .
As Π is 1/2-nontrivial, many g’s will be 1/4-nontrivial (any constant less than 1/2
would do) and by Theorem 2, for each such g there is a sublinear set of players B2

that can force this g to be 1 with high probability. Also by Theorem 2, there is a
sublinear set of players B1 that can likewise force the output of Π to be one of these
g’s. A natural strategy is to choose B = B1 ∪B2.

The problem with this plan is that B2 depends on g; we really need one B2

that works for many g’s. We show this by proving that a random B2 will work with
significant probability for any 1/4-nontrivial g. It follows that a random B2 will
work for many g’s. For general r, we will proceed by induction, with our inductive
assumption being that a random sublinear set of players can control the protocol with
significant probability.

To make these ideas rigorous, we begin with some definitions. For β ∈ [0, 1], we
say that a subset B is β-powerful in Π if p1

Π(B) ≥ 1 − β.
Definition 10. Let Cn(r;α, β) (written Cn(r; γ) when α = β = γ) denote the

collection of pairs 〈δ, b〉 so that for any (n, r)-protocol Π that is α-nontrivial, at least
a δ fraction of sets B ⊂ [n] of size b are β-powerful in Π.

In this notation, we are aiming to show that for some δ > 0 and b � n, (δ, b) ∈
Cn(r; 1/2, o(1)) for sufficiently large n. We prove the somewhat stronger statement
that (δ, b) ∈ Cn(r; o(1)).

The basis case of the induction on r is provided by the following result for one-
round protocols.

Lemma 11. Let n ∈ N and γ ∈ (0, 1
2 ) and b ≤ n, and assume γb ≥ 400n/ log n.

Then 〈δ(n, b, γ), b〉 ∈ Cn(1; γ), where

δ(n, b, γ) =
1

2

(
b

4n

)2
80n
bγ

.

The induction step is provided by the following lemma.
Lemma 12. Fix n. If 〈δ1, b1〉 ∈ Cn(r1; γ1) and 〈δ2, b2〉 ∈ Cn(r2; γ2), then〈

δ1δ2
2

, b1 + b2

〉
∈ Cn

(
r1 + r2;

2γ1

δ2
+ γ2

)
.

These two lemmas are combined to prove the following lemma.
Lemma 13. Let b ≤ n ∈ N and γ ∈ (0, 1

2 ). Define λ0 = 1
2 and for r ≥ 1 define

λr = 4λr−1

(
4n

b

)2
160n
bγ

λr−1

.

Then for all r ≥ 1 such that γb ≥ 800λr−1n/ log n,〈
1

λr
, rb

〉
∈ Cn(r; rγ).
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An immediate consequence of this lemma is the following corollary.

Corollary 14. Let n, b, γ, and λi be as in Lemma 13 and suppose that r is an
integer such that

γb log n

800n
≥ λr−1.

Then if Π is an (n, r)-protocol that is rγ-nontrivial, there exists at least one subset B
of size rb that is rγ-powerful.

We first deduce the main theorem from this corollary.

Proof of Theorem 3. We prove the second part of the theorem first.

Let r(n) be an integer valued function with r(n) ≤ (1/2 − ε) log∗ n and let Π =
(Πn : n ≥ 1) be a sequence where Πn is an (n, r(n))-protocol. Let

b(n) =
(r(n))2n

log(2r(n)−1) n
a(n),

where a(n) is any function tending to infinity. Let n be sufficiently large, and sup-
pose for contradiction that for some γ > 0, Π is (b(n), γ)-resilient. Without loss of
generality we may assume that p1

Πn
≥ 1/2. Let b′(n) = b(n)/r(n) and

γ′ = γ′(n) =
γ

2r(n)
.

By the previous corollary applied to b′ and γ′, if

γa(n) log n

1600 log(2r−1) n
≥ λr−1,(3.1)

then there is at least one subset of size r(n)b′(n) = b(n) that is (r(n)γ′(n) = γ/2)-
powerful, which would contradict our assumption. So it suffices to show that inequal-
ity (3.1) hold When r = 1 inequality (3.1) holds, for large enough n, by inspection.

Otherwise, taking log(2r−2) of both sides, the left-hand side is at least 1
2 log(2r−1) n for

large enough n and so it suffices to show that this is an upper bound on log(2r−2) λr−1.
In the following proposition, T denotes the tower function, as defined in section 2.1.

Proposition 15. Let b ≤ n and γ ∈ (0, 1). For all integers r ≥ 0, λr ≤ κr where

κr =
bγ

320n
T

(
2r;

640n

bγ

)
.

Proof. κr satisfies the recurrence

κ0 = 2,

κr =

(
bγ

320n

)
22

320n
bγ

κr−1

,

so it suffices to show that

λr ≤
(

bγ

320n

)
22

320n
bγ

λr−1

,
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which follows from

λr = 4λr−1

(
4n

b

)2
160n
bγ

λr−1

=

(
bγ

320n

)(
1280nλr−1

bγ

)(
4n

b

)2
160n
bγ

λr−1

≤
(

bγ

320n

)(
5120n2λr−1

b2γ

)2
160n
bγ

λr−1

=

(
bγ

320n

)
2
log

(
5120n2λr−1

b2γ

)
2

160n
bγ

λr−1

≤
(

bγ

320n

)
22

320n
bγ

λr−1

.

Using the proposition, and the assumption about b, for n sufficiently large we
have

log(2r−2) λr−1 ≤ 640n

bγ
≤ 640

a(n)γ
log(2r(n)−1) n <

1

2
log(2r(n)−1) n,

as required to complete the proof of the second part of the theorem.

For the first part of the theorem, it suffices to note that if r(n) ≤ 1
2 log∗ n−∆ for

∆ = log∗ log∗ n, then r(n)2 = o(log(2r(n)−1) n). This follows by taking log(∆) of both

sides: log(∆)(r(n)2) ≤ 2 while log(∆)(log(2r(n)−1) n) ≥ T(∆; 2). Hence we can choose
b(n) = o(n) so that it satisfies the hypothesis and, hence, the conclusion of the second
part of the theorem.

So it remains to prove Lemmas 11, 12, and 13.

3.1. Proof of Lemma 11. Let f be a γ-nontrivial function on n variables. We
want to show that for b in the given range, a “large” fraction of the sets of size b are
γ-powerful. In light of Proposition 6, we may assume that f is monotone.

Fix γ ∈ (0, 1/2). We first describe a stochastic process for selecting a sequence of
variables v1, v2, . . . , vd for an integer d to be specified, and show that with probability
at least 1/2, the process produces a set of variables that is γ-powerful. The process
depends on a parameter s, which we will also specify later. Having selected the first k
of these variables v1, . . . , vk, let fk denote the (monotone) Boolean function on n− k
variables obtained by setting each vi to 1. We then select vk+1 as follows:

1. If there is a variable v whose influence in fk is at least 2−s, let vk+1 be such
a variable of lowest index.

2. Otherwise, choose vk+1 uniformly at random from among the remaining n−k
variables.

We will establish the following claim.

Claim A. Let n be sufficiently large and let d ∈ [n] and γ ∈ (0, 1/2), and suppose
that γd ≥ 160n

log n . Let s, the parameter of the process, be 80n
γd . Then

Pr
[
{v1, . . . , vd} is γ-powerful in f

]
≥ 1/2.
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Define random variables Xk and Zk, for i = 0, . . . , d, by

Xk =

{
1 if p1

fk−1
≥ 1 − γ,

I1
fk−1

(vk) otherwise,

Zk =

k∑
i=1

Xi.

Claim A is easily deduced from the following two claims. In both claims, n, d, γ,
and s are as in Claim A.

Claim B. If Zd ≥ 1 − 2γ, then {v1, . . . , vd} is γ-powerful in f .
Claim C. Suppose 3 ≤ s ≤ log(20n) − log log(20n). For each k = 1, . . . , d,

E

[
Xk X0, . . . , Xk−1

]
≥ sγ

20n
.

Assume Claims B and C. Let s = 80n/γd. Since γd ≥ 160n/ log n, and d ≤ n,
s satisfies the hypothesis of Claim C and therefore

E[Zd] ≥ dsγ

20n
≥ 4.

Applying Lemma 9 with µ = 4 and δ = 3/4 gives

Pr[Zd < 1] ≤ e−9/8;

now applying Claim B yields the conclusion of Claim A.
To prove Claim B, assume that Zd ≥ 1− 2γ. It suffices to show that p1

fd
≥ 1− γ,

since this is equivalent to {v1, . . . , vd} being γ-powerful. Since p1
fk

is nondecreasing in

k, we may assume that p1
fk

< 1 − γ for k < d. Then, recalling the definition of Zd,

Zd =

d∑
k=1

Ifk−1(vk).

Now for each k ≥ 1, p1
fk

= p1
fk−1

+ I1
fk−1

(vk), and hence p1
fd

= p1
f + Zd. Since p1

f ≥ γ

by hypothesis, p1
fd

≥ 1 − γ, as required for Claim B.
Since v1, v2, . . . , vk−1 determine X0, . . . , Xk−1, Claim C follows if we show

E[Xk|v1, . . . , vk−1] ≥ sγ

20n
.

If pfk−1
≥ 1−γ, then Xk is identically 1. Otherwise, Xk = Ifk−1

(vk). If vk was selected
by rule 1, then Xk ≥ 2−s, which is at least sγ/(20n) for s ≤ log(20n) − log log(20n).
If rule 2 was used to select vk, Lemma 7 gives the desired conclusion. This establishes
Claim C and thus Claim A.

We now complete the proof of Lemma 11. The idea is that there are few variables
chosen by rule 1, so with nonnegligible probability a random set of variables will
contain them all.

More specifically, the hypothesis of the lemma implies that if we set d = �b/2�,
then d and γ satisfy the hypothesis of Claim A. We will use Claim A to show
that a random subset of size b is γ-powerful with the required probability. Choose
s = 80n/(γd) in accordance with Claim A, and observe that s ≤ 1

2 log n.
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First, we reformulate the selection process for v1, v2, . . . , vd in such a way that all
random selections are made at the beginning of the process. We select a pair (S, σ),
where S is a set of d variables chosen uniformly at random and σ is a bijection from [d]
to S chosen uniformly at random from the d! such maps. Then �v(S, σ) = (v1, . . . , vd)
is selected as above, except that rule 2 is replaced by “let i be the least integer such
that σ(i) is not a member of {v1, . . . , vk−1} and set vk = σ(i).” It is easy to see that
this process generates the same distribution over sequences v1, . . . , vd as the original
process. Let R1(S, σ) be the set of vi’s chosen according to rule 1, and let R2(S, σ)
be the set of those vi’s chosen according to rule 2. Obviously, R2(S, σ) ⊆ S. Also,

|R1(S, σ)| ≤ 2s, since Ifk−1
(vk) ≥ 2−s if vk ∈ R1(S, σ) and

∑d
k=1 Ifk−1

(vk) ≤ p1
fd

≤ 1.
Now, consider a randomly chosen set B of size b. We view the probability space

for B as consisting of triples (S, σ, T ), where S and σ are as above and T is a random
subset of size b− d of [n] \ S. The set B is S ∪ T . For B to be γ-powerful, it suffices
that (i) �v(S, σ) is γ-powerful and (ii) R1(S, σ) − S ⊆ T , since then B contains the
γ-powerful set R1(S, σ) ∪R2(S, σ). By Claim A, event (i) occurs with probability at
least 1/2. Now, for any S0 ⊂ [n] of size b, we may estimate the probability of event
(ii) conditioned on S = S0: since R1(S, σ) − S has size at most 2s = 280n/γd ≤ b/4,
and T is a random subset of [n]\S of size b−d ≥ b/2, the probability that T contains
R1(S, σ) − S is at least

(
b− d

n− d

)(
b− d− 1

n− d− 1

)
· · ·
(

b− d− �2s� + 1

n− d− �2s� + 1

)
≥
(

b

4n

)2s

≥
(

b

4n

)280n/γd

.

Then Pr[event (ii) | event (i)] ≥ ( b
4n

)280n/γd

, from which follows the statement of the
lemma.

This completes the proof of Lemma 11.

3.2. Proof of Lemma 12. We first give a modified (and slightly more general)
formulation of the lemma which will make the exposition a bit clearer.

Lemma 16. Fix n. If 〈δ1, b1〉 ∈ Cn(r1; α1δ2

2 , β1) and 〈δ2, b2〉 ∈ Cn(r2;α2, β2),
then 〈

δ1δ2
2

, b1 + b2

〉
∈ Cn(r1 + r2;α1 + α2, β1 + β2).

To deduce Lemma 12 from this, suppose that δ1, b1, r1, γ1, δ2, b2, r2, and γ2 are
given satisfying the hypotheses of Lemma 12. Apply the above lemma with the same
δi, bi, and ri, and with α1 = 2γ1/δ2, β1 = γ1, and α2 = β2 = γ2.

So we prove Lemma 16.
Proof. Let Π : ({0, 1}n

)
r1+r2 → {0, 1} be an (n, r1 + r2)-protocol with p1

Π ≥
α1 + α2. We want to lower bound the probability that a (uniformly) random subset
B of [n] of size b1 + b2 is β1 + β2-powerful in Π.

A random subset B of size b1 + b2 can be selected by selecting subsets B1, B2, C,
where B1 is a uniformly random subset of size b1, B2 is a uniformly random subset of
size b2, and C is a uniformly random subset of n−(B1∪B2) of size b1 +b2−|B1∪B2|.
Clearly, the probability that B = B1 ∪ B2 ∪ C is β1 + β2-powerful is at least the
probability that B1∪B2 is β1 +β2-powerful, so we lower bound this latter probability.

To do this, we define an event V that implies that B1 ∪ B2 is β1 + β2-powerful
and such that PrB1,B2 [V ] can be analyzed.

The input to Π is a vector in ({0, 1}n)r1+r2 . Fixing the outcome of the first r1

rounds to �σ ∈ ({0, 1}n
)
r1 gives rise to an (n, r2)-protocol Π[�σ] : ({0, 1}n

)
r2 → {0, 1}
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by assigning

Π[�σ](�τ) = Π(σ1, . . . , σr1 , τ1, . . . , τ r2).

Then p1
Π[!σ] can be viewed as a function of �σ. Let E be the set of those �σ for which

p1
Π[!σ] ≥ α2.

For B2 ⊂ [n], let EB2 be the set of all �σ ∈ E such that B2 is β2-powerful with
respect to the protocol Π[�σ], i.e.,

EB2
=
{
�σ ∈ E : p1

Π[!σ](B2) ≥ 1 − β2

}
.

For each B2 ⊆ [n] of size b2, let Π̂B2
be the (n, r1)-protocol Π̂ = Π̂B2 given by

Π̂B2(�σ) =

{
1 if �σ ∈ EB2

,

0 otherwise.

We now define V to be the event (depending on B1 and B2) that B1 is β1-powerful
in Π̂B2 .

First we show that V implies that B1 ∪B2 is β1 +β2-powerful in Π. Consider the
following two-step strategy for B1 ∪B2: (i) For the first r1 rounds, B1 plays so as to
maximize the probability that �σ ∈ EB2 . Assuming this is successful then (ii) during
the next r2 rounds, B2 tries to force the outcome of Π to be 1. The probability that
this strategy fails is at most the sum of the probability that (i) fails and that (ii) fails
given that (i) succeeds. The probability that (i) fails is at most β1 by the definition
of V . Assuming that (i) succeeds, the probability that (ii) fails is at most β2 by the
definition of the relation EB2 . Thus, given V , B1 ∪B2 is β1 + β2-powerful.

It remains to show that Pr[V ] ≥ δ1δ2/2. To do this we consider, for η > 0, the
event Uη (depending on B2 alone) that Pr!σ[�σ ∈ EB2 ] ≥ η. We will show that when
η = α1δ2

2 , Pr[Uη] ≥ δ2/2 and Pr[V |Uη] ≥ δ1, which immediately gives the desired
lower bound on Pr[V ].

First we lower bound Pr[Uη]. For fixed B2 we have

Pr
!σ

[�σ ∈ EB2 ] = Pr
!σ

[�σ ∈ E ] × |EB2 |
|E| .(3.2)

By the definition of E ,

E
!σ

[p1
Π[!σ]] ≤ Pr

!σ
[�σ ∈ E ] + (1 − Pr

!σ
[�σ ∈ E ])α2 ≤ Pr

!σ
[�σ ∈ E ] + α2.

We also have E!σ[p1
Π[!σ]] = p1

Π ≥ α1 + α2, and thus

Pr
!σ

[�σ ∈ E ] ≥ α1.(3.3)

Letting W = W (B2) denote the random variable |EB2
|/|E| and combining (3.3)

and (3.2), we have

Pr
B2

[Uη] ≥ Pr
B2

[W ≥ η/α1].
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So we lower bound this latter probability. For σ ∈ E , the protocol Π[�σ] is an
(n, r2) protocol that is α2-nontrivial. Thus, by the hypothesis of the lemma, for any
�σ ∈ E ,

Pr
B2⊂[n]
|B2|=b2

[
�σ ∈ EB2

]
≥ δ2.

Summing over σ ∈ E and dividing by |E| we obtain EB2
[W ] ≥ δ2. Since W ∈ [0, 1],

we also have EB2 [W ] ≤ PrB2 [W ≥ η/α1] + η/α1, which implies PrB2 [W ≥ η/α1] ≥
δ2 − η/α1. Setting η = α1δ2/2 we have PrB2

[Uα1δ2/2] ≥ PrB2 [W ≥ δ2/2] ≥ δ2/2 as
required.

Finally, we lower bound Pr[V |Uη]. V is the event that B1 is β1-powerful in Π̂B2 .

The event Uη implies that the protocol Π̂B2 is η-nontrivial, and for η = α1δ2/2, the
hypothesis of the lemma implies that the probability that V occurs is at least δ1.

3.3. Proof of Lemma 13. Fix b, n, and γ as hypothesized. Let H(r) denote
the hypothesis γb ≥ 800nλr−1/ log n, and let C(r) denote the conclusion〈

1

λr
, rb

〉
∈ Cn(r; rγ).

We want to show that H(r) implies C(r) for all r ≥ 1. We proceed by induction on r.

The basis case is immediate from Lemma 11. For the induction step, let r ≥ 1,
and suppose that H(r) implies C(r). Assume H(r + 1) is true; we want to show
C(r + 1) holds. Now H(r + 1) implies H(r) since λr ≥ λr−1, and hence C(r) holds.
If γ′ ∈ (0, 1/2) is such that γ′b ≥ 400n/ log n, then Lemma 11 implies

〈δ(n, b, γ′), b〉 ∈ Cn(1; γ′).

Combining this and C(r) using Lemma 12, and setting γ′ = γ
2λr

, gives

〈
δ(n, b, γ′)

2λr
, (r + 1)b

〉
∈ Cn(r + 1, (r + 1)γ),

which is equivalent to C(r + 1).

This completes the proof of Lemma 13 and the proof of the main theorem.

4. Extensions to protocols with longer messages. We now indicate how to
generalize the bounds proven above to protocols which permit players to send longer
messages. Recall that for n, r ∈ N and �� = (�1, . . . , �r) ∈ N

r, we say that Π is a

(n, r, ��)-protocol if n is the number of players, r is the number of rounds, and no more
than �k bits are broadcast by each player in the kth round.

We extend Definition 10 to account for variable message lengths.

Definition 17. Let C
!

n(r;α, β) (written C

!

n(r; γ) when α = β = γ) denote the

collection of pairs 〈δ, b〉 so that for any (n, r, ��)-protocol Π that is α-nontrivial, at least
a δ fraction of sets B ⊂ [n] of size b are β-powerful in Π.

We begin by considering a single-round protocol f : ({0, 1}
)n → {0, 1} in which
each player broadcasts � bits. Simply treating f as a function on n� Boolean variables
and examining the stochastic process of Section 3.1 yields the following version of
Claim A.
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Claim D (cf. Claim A). Let n� be sufficiently large and let d ∈ [n] and γ ∈
(0, 1/2), and suppose that γd ≥ 160n


log(n
) . Let s, the parameter of the process, be 80n

γd .

Then

Pr
[
{v1, . . . , vd} is γ-powerful in f

]
≥ 1/2.

If the Boolean variables {v1, . . . , vd} are γ-powerful in f : {0, 1}n
 → {0, 1}, then
the {0, 1}
-valued variables {x | ∃i, vi is a component of x} are γ-powerful in f , again
viewed as a function on ({0, 1}
)n. Observe that applying Claim A in this way does
not exploit the fact that each player controls many bits of the function f . The proof
of Lemma 11 now yields the following lemma.

Lemma 18 (cf. Lemma 11). Let n, � ∈ N and γ ∈ (0, 1
2 ) and b ≤ n, and assume

γb ≥ 400n�/ log(n�). Then 〈δ, b〉 ∈ C
(
)
n (1; γ), where

δ = δ(n, b, �, γ) =
1

2

(
b

4n

)2
80n�
γb

.

The number of bits broadcast per round is immaterial to the proof of Lemma 12;
restating that lemma for multibit protocols yields the following lemma.

Lemma 19 (cf. Lemma 12). Fix n. If 〈δ1, b1〉 ∈ C
!

n(r1; γ1) and 〈δ2, b2〉 ∈

C !m
n (r2; γ2), then 〈

δ1δ2
2

, b1 + b2

〉
∈ C(!
,!m)

n

(
r1 + r2;

2γ1

δ2
+ γ2

)
,

where (��, �m) denotes the vector (�1, . . . , �r1 ,m1, . . . ,mr2).
We combine these to prove the following lemma.
Lemma 20 (cf. Lemma 13). Let b ≤ n, γ ∈ (0, 1/2), and li ∈ {1, 2, . . . } for each

i ≥ 0. Define λ0 = 1
2 , and for r ≥ 1 define

λr = 4λr−1

(
4n

b

)2
160nlr−1

γb
λr−1

.

Assume that for each r ≥ 1, λrlr ≥ λr−1lr−1. Then, if γb ≥ 800nlr−1λr−1/ log n,〈
1

λr
, rb

〉
∈ C

!

n(r; rγ),

where �i = lr−i, so �� = (�1, . . . , �r) = (lr−1, . . . , l0).
Proof. Fix b, n, γ, and li as hypothesized. Let H(r) denote the hypothesis γb ≥

800nlr−1λr−1/ log n, and let C(r) denote the conclusion〈
1

λr
, rb

〉
∈ C

!

n(r; rγ),

where �� = (lr−1, . . . , l0). We want to show that H(r) implies C(r) for all r ≥ 1. We
proceed by induction on r.

The basis case is immediate from Lemma 18. For the induction step, let r ≥ 1,
and suppose that H(r) implies C(r). Assume H(r + 1) is true; we want to show that



LOWER BOUNDS FOR COLLECTIVE COIN-FLIPPING 1659

C(r + 1) holds. Now H(r + 1) implies H(r) since, by assumption, λrlr ≥ λr−1lr−1,
and hence C(r) holds. If γ′ ∈ (0, 1/2) is such that γ′b ≥ 400nlr/ log n, then Lemma 18
implies that

〈δ(n, b, lr, γ
′)), b〉 ∈ C(lr)

n (1; γ′).

Combining this and C(r) using Lemma 19, and setting γ′ = γ
2λr

, gives〈
δ(n, b, lr, γ

′)
2λr

, (r + 1)b

〉
∈ C

!

n(r + 1, (r + 1)γ),

where �� = (lr, . . . , l0), which is equivalent to C(r + 1).
This may be applied to prove Theorem 4.
Proof of Theorem 4. Fix n. Set α = 1

log∗ n and define γ = α2, b = �α2n�, and, for

i ∈ {0, . . . , r − 1},

li = max

(
1,

⌊
αγb(log(2(r−i)−1) n)1−α

800n

⌋)
.(4.1)

Note that

lo ≥ α5(log(2r−1) n)1−α

800
=

(log(log∗ n−2 log∗ log∗ n−1) n)1−α

800(log∗ n)5

=
(T (2 log∗ log∗ n− 1; 1))1−o(1)

800(log∗ n)5
= (log∗ n)ω(1)

so that, when n is sufficiently large, γ < 1
2 and lr−1 ≥ · · · ≥ l0 > 1. In this case, with

λi defined as in Lemma 20,

λi = 4λi−1

(
4n

b

)2
160nli−1λi−1

bγ

= 2log 4+log λi−1+2

(
160nli−1λi−1

bγ
+log log 4n

b

)

≤ 22
160nli−1λi−1

bγ
+log log 4+log log λi−1+log log 4n

b

and, as max(log log 4, log log λi−1, log log(4n/b)) < 160nli−1λi−1/γb,

λi ≤ 22
640nli−1λi−1

bγ ≤ 22α(log(2(r−i)+1) n)1−αλi−1
.

As noted above, these li are monotonically increasing (in i) and therefore satisfy the

hypothesis of Lemma 20. We show that for sufficiently large n, λi ≤ (log(2(r−i)−1) n)α.
Since this is clearly true for λ0, by induction

λi ≤ 22α(log(2(r−i)+1) n)1−αλi−1 ≤ 22α(log(2(r−i)+1) n) ≤ (log(2(r−i)−1) n)α,(4.2)

where we have applied the inequality xε ≤ εx, valid when, for example, x ≥ 4 and
ε ∈ [1/

√
x, 1]. (We apply the inequality with ε = α and x = log(2(r−i)) n; both these

requirements are met for sufficiently large n.)
Finally, from (4.1) and (4.2) above,

800nlr−1λr−1

log n
≤ αγb ≤ γb,

so that Lemma 20 applies. This asserts the existence of an rγ = o(1)-powerful set of
rb = o(n) players for any protocol Π under the following assumptions:
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• Π is rγ = o(1)-nontrivial,
• Π lasts for r rounds, with r ≤ 1

2 log∗ n− log∗ log∗ n, and
• Π calls for no more than

lr−k = Ω

(
(log(2k−1) n)(1−α)

poly(log∗ n)

)
= (log(2k−1) n)(1−O(α))

communication bits in the kth round.

5. The influence of large coalitions. Applying the results of [13], one can
show that, for a Boolean function f with p1

f = 1/2 and b(n) = Θ(n), there is always

a coalition L of size b(n) for which p0
f (L) ≥ 1 − 1/nc for some appropriate constant

c (depending on b). When b(n) ≥ n/2, however, the following observation from [17]
may be applied.

Proposition 21. Let X be a finite probability space and f : Xn → {0, 1}. Let
A1, A2 ⊂ [n] be a partition of the variables on which f is defined (so that A1∪A2 = [n]
and A1 ∩A2 = ∅). Then for at least one of these two sets, Ai,

p1
f (Ai) = 1 or p0

f (Ai) = 0.

Below we observe that near this n
2 threshold (specifically, for b(n) > (1/3 + ε)n),

the above bound of [13] may be improved to 1 − 1/ exp(Ω(n)).

In preparation for the lemma, we record a Chernoff bound (see, e.g., [3]).

Lemma 22. Let Xi, i = 1, . . . , n, be independent random variables, each uniformly
distributed in {0, 1}. Then

Pr

[∑
i

Xi − n

2
> a

]
< exp

(
− a2

2n

)
.

Theorem 23. Let γ > 1
3 . Let f : {0, 1}n → {0, 1} be a Boolean function and

let B = {B ⊂ [n] : |B| = �γn�}. If p1
f (B) < 1 for all B ∈ B, then for all B ∈ B,

p0
f (B) ≥ 1 − ε, where

ε = exp

(
− (1 − 3γ)2

8(1 − γ)
n

)
.

Proof. Assume that f is monotone. Recall that a min-term of a monotone func-
tion f is a minimal subset of variables which, if set to 1, ensures that f = 1. If f has a
min-term of cardinality at most γn, then clearly there is B ∈ B for which p1

f (B) = 1.
Otherwise all min-terms have cardinality larger than γn. Fix B ∈ B and consider an
input �x = x1 . . . xn, where each xi, for i �∈ B, is chosen independently at random in
{0, 1}, and xi = 0 for i ∈ B. Then E[

∑
i xi] ≤ 1−γ

2 n, so that by applying the above
Chernoff bound,

Pr

[∑
i

xi > γn

]
< exp

(
− (3γ − 1)2

8(1 − γ)
n

)
.

Then p0
f (B) > 1 − exp

(
− (3γ−1)2

8(1−γ) n
)

, as desired.
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6. Open problems. We summarize the known results concerning protocols that
are resilient against a linear number of corrupt players:

1. By [16] there is an (n,
[
1 + o(1)

]
log n, 1)-protocol which is Ω(n)-resilient. By

Theorem 3, there is no (n, (1/2 − ε) log∗ n, 1)-protocol that is Θ(n)-resilient.

2. By [16], there is an (n, log∗ n+O(1), ��)-protocol, where �k = O(log(k) n), that

is Ω(n)-resilient. By Theorem 4, there is no (n, (1/2−o(1)) log∗ n, ��)-protocol

that is Θ(n)-resilient for some �k = (log(2k−1) n)1−o(1).
3. It is not difficult to show that Theorem 2 actually implies that there can be

no (n, 1, o(log n))-protocol that is Θ(n)-resilient.

These suggest several avenues of investigation:

1. In the case where each player sends a single bit per round (item 1 above),[
1 + o(1)

]
log n rounds are sufficient to guarantee Ω(n)-resilience,

[
1/2 −

o(1)
]

log∗ n rounds are necessary—what is the right answer?
2. In the general case (item 2 above), can Theorem 4 be strengthened to show

any Ω(n)-resilient protocol has some round k during which Ω(log(k) n) com-
munication occurs?

3. From (3) above, no one-round protocol using o(log n) bits per player can be
Ω(n)-resilient. Even abandoning all constraints on the number of bits sent
per round, is there a one (or even constant) round Ω(n)-resilient protocol?

4. We have focused on protocols where honest players flip a fair coin; what can
be said when the honest players’ coin flips are biased?
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(1967), pp. 357–367.
[5] M. Ben-Or and N. Linial, Collective coin flipping, robust voting schemes and minima of

Banzhaf values, in 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, 1985, IEEE, pp. 408–416.

[6] M. Ben-Or and N. Linial, Collective coin flipping, in Randomness and Computation, S. Mi-
cali, ed., Academic Press, New York, 1990, pp. 91–115.

[7] M. Ben-Or, N. Linial, and M. Saks, Collective coin flipping and other models of imperfect
randomness, in Proceedings of the Seventh Hungarian Colloquium on Combinatorics, Col-
loq. Math. Soc. János Bolyai 52, A. Hajnal, L. Lovász, and V. Sós, eds., North-Holland,
Amsterdam, 1988, pp. 75–112.

[8] H. Chernoff, A measure of the asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Ann. Math. Statistics, 23 (1952), pp. 493–507.

[9] U. Feige, Noncryptographic selection protocols, in 40th Annual Symposium on Foundations of
Computer Science, 1999, IEEE, pp. 142–152.

[10] E. Friedgut and G. Kalai, Every monotone graph property has a sharp threshold, Proc.
Amer. Math. Soc., 124 (1996), pp. 2993–3002.
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