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Abstract

We consider the problem of random selection, where p players follow a protocol to jointly
select a random element of a universe of size n. However, some of the players may be adversarial
and collude to force the output to lie in a small subset of the universe. We describe essentially
the first protocols that solve this problem in the presence of a dishonest majority in the full-
information model (where the adversary is computationally unbounded and all communication
is via non-simultaneous broadcast). Our protocols are nearly optimal in several parameters,
including the round complexity (as a function of n), the randomness complexity, the communi-
cation complexity, and the tradeoffs between the fraction of honest players, the probability that
the output lies in a small subset of the universe, and the density of this subset.
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1 Introduction

Suppose p players wish to jointly make a random choice from a universe of size n. They follow some
protocol, and if all parties play honestly, the output is indeed a uniformly random one. However,
some of the players may form a coalition and deviate arbitrarily from the protocol, in an attempt
to force some output. The problem of random selection is that of designing a protocol in which the
influence of coalitions of dishonest players is somehow limited.

Random selection is a very useful building block for distributed algorithms and cryptographic
protocols, because it allows one to first design protocols assuming a public source of randomness,
which is often an easier task, and then replace public randomness with the output of a random
selection protocol. Of course, for this to work, there must be a good match between the guarantees
of the random selection protocol and the requirements of the application at hand. Nevertheless,
this general paradigm has been applied successfully numerous times in the past in various settings,
e.g., [Yao86, GMW87, GGL98, OVY93, Dam93, DGW94, Oka00, GSV98, Lin01, Bar02, KO04].
This motivates a systematic study of random selection in its own right, like the one we undertake
in this paper.

The Setting. The problem of random selection has been widely studied in a variety of settings,
which differ in the following respects:

Adversary’s Computational Power. In some work on random selection, such as Blum’s ‘coin-tossing
over the telephone’ [Blu82], the adversary is assumed to be computationally bounded (e.g.,
probabilistic polynomial time). Generally, in this setting one utilizes one-way functions and
other cryptographic primitives to limit the adversary’s ability to cheat, and thus the resulting
protocols rely on complexity assumptions. In this paper, we study the information-theoretic
setting, where the adversary is computationally unbounded (so complexity assumptions are
useless).

Communication Model and the Adversary’s Information. There is a choice between having point-
to-point communication channels, a broadcast channel, or both. In the case of point-to-point
communication, one can either assume private channels, as in [BGW88, CCD88], or allow the
adversary full access to all communication, as in the full-information model of Ben-Or and
Linial [BL89]. We allow a broadcast channel and work in the full-information model (so there
is no benefit from point-to-point channels). We do not assume simultaneous communication,
and thus consider a ‘rushing’ adversary, which can send its messages in a given round after
receiving those of the honest players.

Number of Players. There has been work specifically studying two-party protocols where one of
the players is adversarial; examples in the full-information model include [GGL98, SV05].
Other works study p-player protocols for large p, such as the large body of work on collective
coin-flipping (random selection where the universe is of size n = 2) and leader election [BL89,
Sak89, AN93, CL95, ORV94, BN00, Zuc97, RZ98, Fei99]. In this paper, we focus on the latter
setting of p-player protocols, but some of our results are significant even for p = 2.

To summarize, here we study general multiparty protocols for random selection in the full-
information model (with a broadcast channel). This is the first work in this setting to focus on the
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case that a majority of the players may be dishonest.1 It may be surprising that protocols exist for
this case, as the other two other well-studied problems in this setting, leader election and collective
coin-flipping, are provably impossible to solve with an adversarial majority [Sak89].

The Goal: Construct p-player protocols for selecting an element of [n] such that even
if a β fraction of players are cheating, the probability that the output lands in any small
subset of [n], of density µ, is at most ε.

Particular applications of random selection protocols often have special additional requirements,
such as “simulatability.” However, all of the existing work on random selection with information-
theoretic security, such as [BL89, Sak89, GGL98, NOVY98, AN93, Dam93, DGW94, GSV98, RZ98,
Fei99, DHRS04, SV05], seem to include at least some variant of our requirement above. Thus it
is of interest to understand this requirement on its own, in particular the tradeoffs between the
parameters p, n, β, µ, and ε, as well as the efficiency of protocols meeting the requirement.

As these five parameters vary, we have a very general class of problems, which includes many
previously studied problems as special cases (See Section 2.2.). Some natural settings of parameters
are n being exponentially large in the security parameter (e.g., choosing a random k-bit string),
p being constant or polynomial, β being a constant in (0, 1) (we are particularly interested in
β ≥ 1/2), and µ, ε either being constants in (0, 1) or tending to zero.

Regarding protocol efficiency, we focus primarily on information-theoretic measures, such as
the communication and round complexities, but we also provide some computationally efficient
versions of our protocols.

Our Results. In this paper, we give several protocols for random selection that tolerate an
arbitrarily large fraction of cheating players β < 1. The protocols are nearly optimal in many of
the parameters, for example:

• One of our protocols achieves an error probability of ε = Õ(µ1−β), when the number of players
is constant and the density µ of bad outcomes is arbitrary. This comes close to the lower
bound of ε ≥ µ1−β proven by Goldreich, Goldwasser, and Linial [GGL98]. For a nonconstant
number of players, we can come polynomially close to the lower bound, achieving ε = µΩ(1−β),
provided that the fraction β of cheating players is bounded away from 1.

• One of our protocols can handle any density µ of bad outcomes that is smaller than the
fraction α = 1 − β of honest players while achieving an error probability ε that is bounded
away from 1. More generally, we can handle any constants α, µ such that b1/αc ≤ d1/µe− 1,
which is a tight tradeoff by a lower bound of Feige [Fei99].

• In our protocols, the total number of coins tossed by the honest parties is log n+o(log n) (when
the other parameters are constant), which almost equals the lower bound of log n−O(1). As
the only bits communicated in our protocols are the random coin tosses, the communication
complexity is also nearly optimal.

• As a function of n, the round complexity of our protocols is log∗ n + O(1) (when the other
parameters are constant). This is within a factor of essentially 2 of the (1/2 − o(1)) log∗ n

1We note that dishonest majorities have been studied extensively in the settings of computationally bounded
parties and private channels, both for Byzantine agreement and secure computation, e.g., [GMW87, LPS80, GL02].
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lower bound proven by Sanghvi and Vadhan [SV05], which applies whenever β ≥ 1/2, and
µ > 0 and ε < 1 are constants.

Techniques. Our protocols build upon recent work on round-efficient leader election [RZ98,
Fei99] and round-efficient two-party random selection [SV05]. Specifically, the leader election pro-
tocols of Russell and Zuckerman [RZ98] and Feige [Fei99] work by iterating a one-round protocol
that reduces the task of electing a leader from p players to that of electing from polylog(p) play-
ers. Similarly, the two-party random selection protocol of Sanghvi and Vadhan [SV05] utilizes a
one-round protocol that reduces selecting from a universe of size n to selecting from one of size
polylog(n). We combine these approaches, iteratively reducing both the number of players and the
universe size in parallel. To do this, we construct new one-round universe reduction protocols that
work for many parties (instead of just two, as in [SV05]). We obtain these by establishing a connec-
tion between randomness extractors [NZ96] (or, equivalently, randomness-efficient samplers) and
universe reduction protocols. Optimizing parameters of the underlying extractors then translates
to optimizing parameters of the universe reduction protocols, resulting in the near-optimal bounds
we achieve in our final protocols. Our main results, as outlined above, refer to protocols that use
optimal extractors, as proven to exist via the probabilistic method, and thus are not explicit or
computationally efficient. In Section 6, we also give computationally efficient versions of our proto-
cols, using some of the best known explicit constructions of extractors. Any additional deficiencies
in these protocols are due to limitations in the state-of-the-art in constructing extractors, which
we view as orthogonal to the issues we study here. Indeed, if the loss turns out to be too much for
some application, then that would provide motivation for further research on explicit constructions
of extractors.

Organization. Section 2 includes definitions, a more detailed description of previous work and
how it relates to this paper, and our results. Section 3 contains the one-round selection protocols
that are the final ingredient in our protocols, and in Section 4 we give protocols that reduce the
number of players and the size of the universe. In Section 5 we describe how the different pieces fit
together to form our final protocols. Finally, our results on explicit protocols, as well as new and
known lower bounds and their relation to our results, appear in Sections 6 and 7 respectively.

2 Formal Definitions, Previous Work and Results

2.1 Random Selection Protocols

We now define random selection protocols.

Definition 2.1 (random selection protocol) A (p, n)-selection protocol is specified by p func-
tions (players) A1, . . . , Ap, a function f , and a number t such that:

• At round i, the j’th player outputs (i.e. broadcasts) a message m
(j)
i , obtained by applying

the function Aj to all previous messages sent, namely {m(k)
l : k ∈ [p], l < i}, as well as the

player’s random coins, r(j).

• After t rounds, the players output f({m(k)
l : k ∈ [p], l ∈ {1, . . . , t}}), which is an element of

[n].
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In the above description, the protocol cannot require the (honest) players to base their messages
in round i on the messages of other players in round i. However, since we do not want to assume
simultaneity within a round, we allow dishonest players to base their messages on the outputs of
all the other players from the same round (but not from later rounds). That is, we do not have
any private communication channels and we consider a “rushing” adversary. This results in the
full-information model of [BL89]:

Definition 2.2 (full-information adversary model) When we say a set S ⊆ [p] of players in a
(p, n)-selection protocol is cheating, we mean that these players compute their messages m

(j)
i using

arbitrary functions (A∗j )j∈S (rather than the Aj’s) and these functions A∗j are applied not only to
messages in previous rounds, but also the messages of the honest players in the current round i

(i.e., {m(k)
i : k ∈ [p] \ S}) as well as some shared coin tosses rS among the dishonest players.

Given this definition, our notion of security is the following.

Definition 2.3 A (p, n)-selection protocol is called (β, µ, ε)-resilient if when at most a β fraction
of players are cheating and S is any subset of [n] of density at most µ, the probability that the
output lands in S is at most ε. We refer to S as a bad set.

We will be interested in the asymptotic behavior of protocols, so when we discuss (p, n)-selection
protocols that are (β, µ, ε)-resilient, we are implicitly referring to a family of protocols, one for each
value of p, n, β, µ, and ε (or some specified infinite set of tuples (p, n, β, µ, ε)). We are then
interested in optimizing a variety of complexity measures:

Definition 2.4 (complexity measures) The computation time of a (p, n)-selection protocol is
the maximum total time spent by all (honest) players (to compute their messages using the functions
Aj, as well as the function f) in an execution of the protocol. We call a protocol explicit if its
computation time is poly(log n, p).

The round complexity is the total number of rounds of the protocol. The randomness complexity
of a protocol is the maximum total number of random bits used by the players.2 (Typically this
maximum is achieved when all players are honest.) The communication complexity of a protocol
is the maximum total number of bits communicated by the players.3

All our protocols are public-coin, in the sense that the honest players flip their random coins and
broadcast the results. Thus, the communication complexity is equal to the randomness complexity.
By convention, we assume that if a player sends a message that deviates from the protocol in some
syntactically obvious way (e.g., the player outputs more bits than requested), then its message is
replaced with some canonical string of the correct form (e.g., the all-zeroes string).

2.2 Previous Work

We now discuss the relationship of the above definitions, specifically of (β, µ, ε)-resilient (p, n)-
selection protocols, to existing notions and results in the literature.

2Actually, it will be convenient to allow the players to pick elements uniformly at random from {1, . . . , m} where
m is determined during the protocol and may not be a power of 2, and in such a case we view this as costing log2 m
random bits.

3As with randomness complexity, it will be convenient to allow players to send elements of {1, . . . , m}, in which
case we charge log2 m bits of communication.
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Two-Party Random Selection. This is the special case where p = 2 and β = 1/2, and attention
in previous work has focused on the tradeoff between µ and ε as well as the round complexity.
Specifically,

• Goldreich, Goldwasser, and Linial [GGL98] constructed, for every n = 2i, an explicit (2, n)-
selection protocol that is (1/2, µ,O(

√
µ))-resilient for every µ > 0. The protocol takes 2 log n

rounds. They also prove that the bound of ε = O(
√

µ) is tight (as a special case of a more
general result mentioned later).

• Sanghvi and Vadhan [SV05] constructed, for every constant δ > 0 and every n, an explicit
(2, n)-selection protocol that is (1/2, µ, O(

√
µ + δ))-resilient for every µ > 0. Their protocol

takes log∗ n + O(1) rounds. They also prove that (log∗ n − log∗ log∗ n − O(1))/2 rounds are
necessary for any (2, n)-selection protocol that is (1/2, µ, ε)-resilient for constants µ > 0 and
ε < 1.

Collective Coin-Flipping [BL89]. This is the special case when n = 2 and µ = 1/2. Attention
in the literature has focused on constructing efficient protocols that are (β, 1/2, ε)-resilient where β
and ε are constants (independent of p), β is as large as possible, and ε < 1. Such a protocol exists
for every constant β < 1/2 [BN00] and can be made explicit [Zuc97]. Conversely, it is impossible
to achieve β = 1/2 and ε < 1 [Sak89]. Efficient constructions of such protocols have been based on
leader election (described below).

Leader Election.

Definition 2.5 A p-player leader election protocol is a (p, p)-selection protocol. It is (β, ε)-resilient
if when at most a β fraction of players are cheating, the probability that the output is the index of
a cheating player is at most ε.

• Every (β, β, ε)-resilient (p, p)-selection protocol is a (β, ε)-resilient p-player leader election
protocol. The converse does not hold because the the former considers each subset S ⊂ [p] of
density at most β as a potential bad set of outcomes, but the latter only considers the subset
consisting of the cheating players.

• Nevertheless, a p-player leader election protocol can be used to construct a (p, n)-selection
protocol for any n by having the elected leader choose a uniform, random element of [n] as
the output. If the election protocol is (β, ε)-resilient, then the resulting selection protocol will
be (β, µ, ε + (1− ε) · µ)-resilient for every µ ≥ 0.

• By the impossibility result for collective coin-flipping mentioned above [Sak89] and the pre-
vious bullet, it is impossible to have an election protocol that is (β, ε)-resilient for β = 1/2
and ε < 1.

• A long line of work [AN93, CL95, ORV94, Zuc97, RZ98, Fei99] on optimizing the resilience
and round complexity for leader election has culminated in the following result of Russell
and Zuckerman [RZ98].4 For every constant β < 1/2, there exists an ε < 1 such that for

4A very recent paper [1] aims to optimize ε as a function of β, obtaining efficient leader election protocols with
ε = O(β).
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all p, there is an explicit (β, ε)-resilient p-player leader election protocol of round complexity
log∗ p + O(1). Consequently, for all constants β < 1/2 and µ > 0, there is a constant ε < 1
such that for all p and n, there is an explicit (β, µ, ε)-resilient (p, n)-selection protocol.

Multi-Party Random Selection. This is the general problem that encompasses the previous
special cases.

• Goldreich, Goldwasser, and Linial [GGL98] constructed, for every n = 2i and every p, an
explicit (p, n)-selection protocol that is (β, µ, µ1−O(β))-resilient for all sufficiently small β and
every µ > 0. The protocol runs in polylog(n) rounds. They also showed that any (β, µ, ε)-
resilient protocol must satisfy ε ≥ µ1−β.

• Russell and Zuckerman [RZ98] constructed, for every n and p such that n ≥ pc for a constant
c, an explicit one-round (p, n)-selection protocol that is (β, µ, µ ·n/nΩ(1−β))-resilient for every
µ > 0 and 1 > β > 0.

Notice that all but the last of the above results require that the fraction β of bad players satisfies
β ≤ 1/2.5 For collective coin-flipping and leader election, this is supported by impossibility results
showing that β ≥ 1/2 is impossible. For 2-party random selection, it does not make sense to
discuss β > 1/2. The only result which applies to β ≥ 1/2 is the last one (of [RZ98]). However,
the resilience µ · n/nΩ(1−β) is quite weak and only interesting when the density µ of the bad set is
close to 1/n.6 Our work is the first to show strong results for the case β > 1/2.

2.3 Our Results

In this section, we present our main results. All of our protocols utilize certain kinds of randomness-
efficient samplers (equivalently, randomness extractors). Here we present the versions of our results
obtained by using optimal samplers, proven to exist via the probabilistic method. We also have
explicit (i.e., computationally efficient) versions of our protocols, obtained by using best known
explicit constructions of samplers; these are described in Section 6.

The first main result of this paper is the following:

Theorem 2.6 For all constants k ∈ N, k > 0 and δ > 0, there exists a constant ε < 1 and a
(p, n)-selection protocol with the following properties:

(i) The protocol has max(log∗ p, log∗ n) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for α = 1/(k + 1) + δ and µ = 1/k − δ.

(iii) The randomness complexity of the protocol is (log n)/α + o(log n) + O(p log p).

The tradeoff between α and µ in the above theorem is optimal up to the slackness parameter δ.
This is shown in Corollary 7.5, as a consequence of a lower bound of Feige [Fei99]. Furthermore, the
round and randomness complexity are nearly optimal as functions of n, as shown by Corollary 7.2
and Theorem 7.6.

Setting p = 2 and α = 1/2, we obtain the following two-party protocol:
5The hidden constant in the protocol of [GGL98] is larger than 2.
6The significance of the [RZ98] protocol is that it is one round and only requires n polynomial in p; in fact, there

is a trivial protocol with somewhat better parameters when n is exponential in p (Lemma 3.1).
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Corollary 2.7 For every constant δ > 0, there exists a constant ε < 1 and a (2, n)-selection
protocol with the following properties:

(i) The protocol has log∗ n + O(1) rounds.

(ii) The protocol is (1/2, 1/2− δ, ε)-resilient.

(iii) The randomness complexity of the protocol is 2 log n + o(log n).

This protocol improves upon the two-party protocol of [SV05]7 in two ways: first, the random-
ness complexity is a nearly optimal 2 log n + o(log n), and not polylog(n). Second, their protocol is
(1/2, ν, ε′)-resilient for some small constant ν, and not for the nearly optimal 1

2 −δ. In other words,
their resilience is not optimal in the density of the bad set. On the other hand, the error probability
ε′ of their protocol is smaller than that of ours. However, a special case of our second theorem
below gives the parameters of [SV05] with the added benefit of optimal randomness complexity.

Our next two results optimize the error probability ε as a function of the density µ of the bad
set and fraction β of cheating players. The first achieves a near-optimal tradeoff when the number
of players is small (e.g., constant).

Theorem 2.8 For all µ, α > 0 and p, n ∈ N, there exists a (p, n)-selection protocol with the
following properties:

(i) The protocol has log∗ n− log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for

ε = µα ·O
(

1
α
· log

1
µ

+ (1− α)p
)1−α

· 2(1−α)p.

(iii) The randomness complexity is [log n+o(log n)+O(p+log(1/µ))]/α+log(1/(1−α))+O(p log p)

Note that when the number p of players and the fraction α of honest players are constants, the
bound becomes ε = Õ(µα), which nearly matches the lower bound of ε ≥ µα proven in [GGL98]
(see Theorem 7.3). However, the bound on ε grows exponentially with p. This is removed in the
following theorem, albeit at the price of achieving a slightly worse error probability of µΩ(α) (for
constrained values of α).

Theorem 2.9 There is a universal constant c such that for all p, n ∈ N, µ, α > 0 satisfying
α ≥

√
c log log(1/µ)/ log(1/µ), there exists a (p, n)-selection protocol with the following properties:

(i) The protocol has max{log∗ p, log∗ n} − log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, µΩ(α))-resilient.

(iii) The randomness complexity is [log n + o(log n) + O(p)]/α + O(p log p) + poly(1/α, log(1/µ)).
7Note that in [SV05], the claimed round complexity is 2 log∗ n + O(1), but this difference from our claim is only

a difference of convention: in their model, only one player may communicate in each round, whereas we use the
convention of multi-party protocols, in which all players may communicate simultaneously in one round.
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One disadvantage of the above two theorems (as compared to, say, the honest-majority protocols
of [GGL98]) is that the protocols require an a priori upper-bound µ on the density of the bad set.
However, we also benefit from this, in that the round complexity improves as µ tends to zero. In
particular, if µ ≤ 1/ log(k) n for some constant k, where log(k) denotes k iterated logarithms, then
the round complexity is constant.

It is natural to wonder whether one might get simultaneously achieve the best of both Theo-
rem 2.6, where α ≈ µ, and Theorem 2.8 or 2.9, where ε → 0 as µ → 0. However, the ε ≥ µα lower
bound of [GGL98] shows that this is impossible (because µµ → 1 as µ → 0).

3 One-Round Protocols

We start with some simple one-round protocols that will play a role in our later constructions.

Lemma 3.1 For every p, ` ∈ N and n = `p, there is an explicit (p, n)-selection protocol that is
(β, µ, nβ · µ)-resilient for every β, µ > 0.

Proof Sketch: Each player outputs a random element of [`], and we take the concatenation of
the players’ outputs. ¤

The above protocol has two main disadvantages. First, the size of the universe n = `p must be
at least exponential in the number of players. (We note that Russell and Zuckerman [RZ98] showed
how to reduce this requirement to be only polynomial, at the price of a somewhat worse resilience.
We will avoid this difficulty in a different manner, by first reducing the number of players.) Second,
in terms of resilience, a bad set of density µ gets multiplied by a factor that grows polynomially
with the universe size (namely, nβ). However, when the number of players is small (e.g., a fixed
constant) and the universe is small (e.g., n = O(1/µ)), it can achieve a nearly optimal bound on ε
as a function of β and µ (cf., Theorem 7.3).

Lemma 3.2 ([Fei99], Cor. 5) For every p, n ∈ N and α, µ ∈ [0, 1] such that b1/αc ≤ d1/µe − 1,
there exists an ε < 1 and a (p, n)-selection protocol that is (1 − α, µ, ε)-resilient. Specifically, one
can take ε = 1− exp(−Ω(α · (1− µ) · np)).

Proof Sketch: Every player chooses a random subset of [n] of density at least 1 − µ, and the
output is the first element of [n] that is contained in every set S that was picked by at least an α
fraction of players. Such an element exists because there exist at most b1/αc ≤ d1/µe− 1 such sets
S, but any d1/µe − 1 sets of density at least 1− µ must have a common intersection. ¤

The advantage of the above protocol is that it achieves an optimal tradeoff between α and
µ (cf., Theorem 7.5). The main disadvantage is that ε can depend on p and n (this time with
exponentially bad dependence), and that it is not sufficiently explicit — even the communication
is of length Θ(n) (rather than polylog(n)).

4 Universe and Player Reduction

The simple 1-round protocols of the previous section behave well when the number of players p
and universe size n are small. Thus, as in previous work, our main efforts will be aimed at giving
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protocols to reduce p and n while approximately preserving the fraction β of bad players and the
density µ of the bad set. Roughly speaking, in one round we will reduce p and n to polylog(p) and
polylog(n), respectively. For this, we consider protocols that select a subset of the universe (or a
subset of the players).

4.1 Definitions

Definition 4.1 A [(p, n) 7→ n′]-universe reduction protocol is a p-player protocol whose output is
a sequence (s1, . . . , sn′) of elements of [n]. Such a protocol is [(β, µ)

γ7→ µ′]-resilient if when at most
a β fraction of players are cheating and S is any subset of [n] of density at most µ, the probability
that at most a µ′ fraction of the output sequence is in S is at least γ. It is explicit if the players’
strategies are computable in time poly(log n, p), and given the protocol transcript and i ∈ [n′], the
i’th element of the output sequence is computable in time poly(log n, p).

Notice that a (p, n)-selection protocol is equivalent to a [(p, n) 7→ n′]-universe reduction protocol
with n′ = 1, and the former is (β, µ, ε)-resilient if and only if the latter is [(β, µ) 1−ε7→ 0]-resilient.

Definition 4.2 A [p 7→ p′]-player reduction protocol is a [(p, p) 7→ p′]-universe reduction protocol.
It is [β

γ7→ β′]-resilient if when at most a β fraction of players are cheating, the probability that at
most a β′ fraction of the output sequence are indices of cheating players is at least γ.

Definition 4.3 A [(p, n) 7→ (p′, n′)]-universe+player reduction protocol is a p-player protocol
whose output is a sequence (s1, . . . , sn′) of elements of [n] and a sequence (t1, . . . , tp′) of elements
of [p]. Such a protocol is [(β, µ)

γ7→ (β′, µ′)]-resilient if when at most a β fraction of players are
cheating and S is any subset of [n] of density at most µ, the probability that at most a β′ fraction of
the first output sequence are cheating players and at most a µ′ fraction of the second output sequence
is in S is at least γ. It is explicit if the players’ strategies are computable in time poly(log n, p),
and given the protocol transcript and i ∈ [n′] (resp., j ∈ [p′]), the i’th (resp., j’th) element of the
first (resp., second) output sequence is computable in time poly(log n, p).

4.2 One-Round Reduction Protocols

In the following one-round protocols, think of θ = 1/polylog(n) and ε = 1/poly(n).

Theorem 4.4 ([RZ98, Fei99]) For every p ∈ N, ε > 0, and θ > 0, there is an explicit, one-round
[p 7→ p′]-player reduction protocol with

p′ = O

(
1− β

θ2
· log

p

ε

)

that is [β 1−ε7→ β + θ]-resilient for all β > 0. Moreover, the randomness complexity is p · log(p/p′).

Proof: Let α = 1 − β. The protocol used is the Lightest-Bin protocol of [Fei99]. Each player
randomly picks one out of b bins, for b to be determined later. The sequence of players output by
the protocol consists of the players who picked the bin chosen by the fewest number of players (ties
are broken arbitrarily), and arbitrarily adding players to increase the total number to be p′ = bp/bc.
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Fix some bin, and suppose players {1, . . . , αp} are the honest players. For each such player i,
define a random variable

Xi =
{

1 if player i chooses the bin, and
0 otherwise.

Let X =
∑αp

i=1 Xi. Since E[Xi] = 1/b, E[X] = αp/b. We will bound the probability that fewer than
(α− θ) · p/b = (1− θ/α) · E[X] of the honest players picked the bin, and then take a union bound
over all b ≤ p bins. By a Chernoff Bound,

Pr
[
X ≤

(
1− θ

α

)
E[X]

]
≤ exp

(
1
2
· θ2

α2
· αp

b

)
≤ ε

p
,

if we take b = b(1/2) · (θ2/α) · p/(log(p/ε))c. Thus, with probability at least 1 − ε, all b ≤ p bins
have at least (α− θ) · p/b ≥ (α− θ) · p′ honest players, so the output sequence has at least an α− θ
fraction of honest players. We conclude by noting that

p′ ≤ p

b
= O

(
1− β

θ2
· log

p

ε

)
.

The starting point for our universe reduction protocol is the simple protocol of Lemma 3.1. That
protocol has the property that a β fraction of cheating players cannot make any outcome in [n]
appear with probability more than 1/n1−β. (This can be seen by taking µ = 1/n.) Thus the output
can be viewed as a source with “min-entropy rate” at least 1− β.8 To get a higher quality output,
it is natural to try applying a randomness extractor, a function that extracts almost-uniform bits
from sources with sufficient min-entropy. However, randomness extractors require an additional
random seed to do such extraction. Thus we will enumerate over all seeds of the extractor, and the
resulting sequence will be the output of our universe reduction protocol. Fortunately, there exist
extractors where the number of seeds is only polylogarithmic in n, the domain of the source.

Actually, it is more convenient for us to work with an object that is essentially equivalent to
extractors, namely (averaging) samplers (cf., [BR94, Zuc97, Gol97]). Samplers are functions that
output sample points of a given universe, with the property that the fraction of samples from any
particular subset of the universe is roughly equal to the density of that subset. In the following
definition, Ur denotes an element of [r] chosen uniformly at random.

Definition 4.5 A function Samp : [r] → [n]t is a (θ, ε) sampler if for every set S ⊆ [n],

Pr
(i1,...,it)←Samp(Ur)

[
#{j : ij ∈ S}

t
>
|S|
n

+ θ

]
≤ ε.

We say that Samp is explicit if for every x ∈ [r] and every j ∈ [t], the j’th component of Samp(x)
can be computed in time poly(log r, log n).9

8The min-entropy of a random variable X is defined as H∞(X) = maxx Pr[X = x]. If X takes values in a universe
U , then its min-entropy rate is defined to be H∞(X)/ log |U |.

9Often the definition of samplers also requires that the fraction of samples that lie in S is also not much larger than
the density of S. However, this follows from our definition (paying a factor of 2 in ε) by considering S. Moreover, we
will only need the one-sided version, and below, in Definition 4.11 we will consider a variant which is not symmetric
with respect to approximation from above and below.
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Zuckerman [Zuc97] showed that samplers (as defined above) are essentially equivalent to ran-
domness extractors. We sketch this connection in Appendix B.

Given p, ` ∈ N and a sampler Samp : [r] → [n]n
′
with r = `p, we obtain a [(p, n) 7→ n′]-universe

reduction protocol ΠSamp as follows: the players use the protocol of Lemma 3.1 to select an element
x ∈ [`p], and then output the sequence Samp(x).

Lemma 4.6 If Samp is a (θ, ε) sampler, then for every µ, β > 0, ΠSamp is [(β, µ)
γ7→ µ+θ]-resilient

for γ = 1− rβ · ε. Moreover, the randomness complexity is log r.

Proof: Call x ∈ [r] “bad” if #{j : ij ∈ S}/t > |S|/n + θ when (i1, . . . , it) ← Samp(x), and note
that the number of bad x’s is at most ε · r by the properties of the sampler. The players use the
protocol of Lemma 3.1 to select an element x from a universe of size r, where the fraction of bad
elements is ε. This is a (p, r)-selection protocol that is (β, ε, rβ · ε)-resilient, and so the probability
of selecting a good x is at least γ = 1 − rβ · ε. If a good x is selected, then the fraction of bad
elements is increased by at most θ.

Notice that for this to be useful, we need the error probability ε of the sampler to be smaller
than r−β, and in fact we will be interested in β that are arbitrarily close to 1. Fortunately, we have
samplers that achieve this. (This is equivalent to the fact that we have extractors that work for
min-entropy rate arbitrarily close to 0.)

Lemma 4.7 (nonconstructive samplers [RT00, Zuc97]) For every n ∈ N, θ > 0, ε > 0 and
r ≥ n/ε, there exists a (θ, ε) sampler Samp : [r] → [n]t with t = O(log(1/ε)/θ2).

It is important to note that the lower bound on r depends linearly on 1/ε; this means that we
can make the error ε ≤ r−β for any β < 1. Combining the above two lemmas, we have:

Theorem 4.8 (nonconstructive 1-round universe reduction) For every p, n ∈ N, β, ε, θ >

0, there exists a 1-round [(p, n) 7→ n′]-universe reduction protocol that is [(β, µ) 1−ε7→ µ + θ]-resilient
for every µ > 0, with

n′ = O

(
log(1/ε) + (β/(1− β)) · (log n + log(1/ε)) + β · p

θ2

)
.

Moreover, the randomness complexity is p + (log n + log(1/ε))/(1− β) + O(1).

Proof: First note that without loss of generality, θ ≥ 1/n, otherwise we can use the trivial protocol
that outputs the entire universe. So now choose r ∈ [(cn/(εθ2))1/(1−β), 2p · (cn/(εθ2))1/(1−β)] such
that r is the p’th power of some natural number, and apply Lemma 4.6 with ε′ = ε/rβ.

Thus, for p = polylog(n), θ = 1/polylog(n), ε = 1/poly(n), and β = 1 − 1/polylog(n), we can
reduce the universe size from n to polylog(n). If the number of players is constant, then we can
iterate this log∗ n times to reduce the universe size to a constant. However, if the number of players
p is large, then the above will not reduce the universe size below βp. Therefore, we will combine
this with the player reduction of Theorem 4.4, via the following composition lemma.
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Lemma 4.9 Given a [(p, n) 7→ n′]-universe reduction protocol Π and a [p 7→ p′]-player reduction
protocol Π′, we can construct a [(p, n) 7→ (p′, n′)]-universe+player reduction protocol Γ such that if

Π is [(β, µ)
γ7→ µ′]-resilient and Π′ is [β

γ′7→ β′]-resilient, then Γ is [(β, µ)
γγ′7→ (β′, µ′)]-resilient. If Π

and Π′ are explicit, then so is Γ. The number of rounds (resp. randomness complexity) in Γ is the
maximum of (resp., sum of) the number of rounds (resp., randomness complexities) in Π and Π′.

Proof: Γ consists of applications of protocols Π and Π′ in parallel, giving the bound on the
round complexity. The honest players use independent random coins for both protocols, so the
randomness complexity is the sum of the randomness complexities of the respective protocols. The
probability that Γ succeeds is the probability that both Π and Π′ succeed, and since they are
independent this is just γγ′. Finally, the computation time of Γ is the sum of the computation
times of Π and Π′, so that if the latter protocols are explicit, then so is the former.

This yields:

Corollary 4.10 (nonconstructive 1-round universe+player reduction) For every n, p ∈ N
and β, θ, ε > 0, there exists a 1-round [(p, n) 7→ (p′, n′)]-universe+player reduction protocol that is
[(β, µ) 1−ε7→ (β + θ, µ + θ)]-resilient for every µ > 0, with

n′ = poly(log n, log(1/ε), 1/θ, p)
p′ = poly(log p, log(1/ε), 1/θ)

Moreover, the randomness complexity is [log n + O(log(1/ε) + log(1/θ) + p)]/(1− β) + p log p.

Notice that if we want to preserve the density µ of the bad set up to a constant factor, then we
can set θ = 1/µ and the above protocol will reduce the universe size to n′ depending polynomially
on 1/µ. However, to obtain some of our results (e.g. Theorems 2.9, 2.8, and their explicit versions),
it will be beneficial to reduce to a universe size that depends almost-linearly on 1/µ. To achieve
this, we use a variant of our sampler-based protocol that is tailored to a particular value of µ.

Definition 4.11 A function Samp : [r] → [n]t is a (µ, θ, ε) density-tailored sampler if for every
set S ⊆ [n] with |S| ≤ µ · n,

Pr
(i1,...,it)←Samp(Ur)

[
#{j : ij ∈ S}

t
> µ + θ

]
≤ 1− ε.

We say that Samp is explicit if for every x ∈ [r] and every j ∈ [t], the j’th component of Samp(x)
can be computed in time poly(log r, log n).

Density-tailored samplers are essentially equivalent to ‘slice extractors,’ defined in [RT00]. As
in Lemma 4.6, these density-tailored samplers also induce selection protocols.

Lemma 4.12 If Samp is a (µ, θ, ε) density-tailored sampler, then for every β > 0, ΠSamp is
[(β, µ)

γ7→ µ + θ]-resilient for γ = 1− rβ · ε. Moreover the randomness complexity is log r.

The reason we are interested in these density-tailored samplers is that they exist with slightly
better parameters for certain values of µ.
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Lemma 4.13 (nonconstructive density-tailored samplers [Vad04]) There is a universal con-
stant c such that for every n ∈ N, µ > 0, θ > 0, ε > 0, t ≥ c · log(1/ε) · max{1/µ, µ/θ2}, and
r ≥ c ·n ·(µ log(1/µ))/(ε log(1/ε)), there exists a (µ, θ, ε) density-tailored sampler Samp : [r] → [n]t.

Note that the number of samples t in these samplers depends linearly on 1/µ (if θ = Ω(µ))
and not polynomially as in Lemma 4.7. Combining the above lemma with Lemma 4.6 we get
a nonconstructive 1-round universe reduction protocol with different parameters from those of
Theorem 4.8:

Theorem 4.14 (nonconstructive, density-tailored 1-round universe reduction) There is
a universal constant c such that for every p, n ∈ N, β, µ, ε, θ > 0 and every

n′ ≥ c ·max
{

µ

θ2
,
1
θ

}
·
(

log
1
ε

+
β

1− β
·
(

log n + log
1
β

)
+ β · p

)
,

there exists a 1-round [(p, n) 7→ n′]-universe reduction protocol that is [(β, µ) 1−ε7→ µ + θ]-resilient.
Moreover, the randomness complexity is p+[log n+log(1/ε)−log log(1/ε)−log(1/µ)+log log(1/µ)+
log(1/β)]/(1− β) + O(1).

Proof: We can choose r ∈ [r′, 2p · r′] such that r is the p’th power of some natural number and

r′ =

(
cn · µ log 1

µ

β · ε log 1
ε

) 1
1−β

.

We then apply Lemmas 4.12 and 4.13 with ε′ = ε/rβ.

4.3 Iteration

Now we iterate our 1-round protocols to reduce both the number of players and the size of the
universe to a constant. The iteration method is given by the following lemma.

Lemma 4.15 Given a [(p, n) 7→ (p′, n′)]-universe+player reduction protocol Π and a [(p′, n′) 7→
(p′′, n′′)]-universe+player reduction protocol Π′, we can construct a [(p, n) 7→ (p′′, n′′)]-universe+player

reduction protocol Π◦Π′ such that if Π is [(β, µ)
γ7→ (β′, µ′)]-resilient and Π′ is [(β′, µ′) γ′7→ (β′′, µ′′)]-

resilient, then Π ◦Π′ is [(β, µ)
γγ′7→ (β′′, µ′′)]-resilient. If Π and Π′ are explicit, then so is Π ◦Π′, and

the number of rounds (resp., randomness complexity) in Π ◦Π′ is the sum of the number of rounds
(resp., randomness complexities) in Π and Π′.

Proof: We construct the protocol Π ◦Π′ as follows: first the initial p players execute protocol Π
on the universe of size n, resulting in a collection of p′ players and a universe of size n′. Now the
selected p′ players run protocol Π′ on the selected universe of size n′. The output is a collection of
p′′ players and a universe of size n′′.

Now suppose that at most a β fraction of the players are cheating, and S is a subset of [n]
of density at most µ. If Π is [(β, µ)

γ7→ (β′, µ′)]-resilient then with probability at least γ, the
resulting collection of players contains at most a β′ fraction of cheating players, and the resulting
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universe contains at most a µ′ fraction of strings from S. If in addition Π′ is [(β′, µ′) γ′7→ (β′′, µ′′)]-
resilient, then assuming Π was successful (which occurs with probability at least γ), applying Π′

on the resulting collections yields the following with probability at least γ′: a collection of p′′

players of which at most a β′′ fraction is cheating, and a universe of size n′′ of which at most µ′′

belong to S. Thus, with probability at least γγ′ both protocols are successful, and so Π ◦ Π′ is

[(β, µ)
γγ′7→ (β′′, µ′′)]-resilient.

The computation time of Π ◦Π′ is the sum of the computation times of Π and Π′, and so if the
latter two are explicit, then so is the former. Finally, since Π ◦ Π′ is the sequential application of
Π and Π′, both the randomness complexity and the number of rounds are simply the sums of the
respective quantities in Π and Π′.

Using this composition lemma, we can now construct a many-round protocol that reduces the
universe size and the number of players. This protocol will be a main component of our final
protocols.

Theorem 4.16 (many-round universe+player reduction) For every n, p ∈ N and every β, θ, ε >

0, there exists a [(p, n) 7→ (p′, n′)]-universe+player reduction protocol that is [(β, µ) 1−ε7→ (β+θ, µ+θ)]-
resilient for every µ > 0, with

n′ = poly(log(1/ε), 1/θ)
p′ = poly(log(1/ε), 1/θ).

Moreover, the number of rounds is t = max{log∗ n, log∗ p} − log∗ n′ + O(1) and the randomness
complexity is [log n + o(log n) + O(p + t · log(1/ε) + t · log(1/θ))]/(1− β) + O(p log p).

Proof: We iteratively apply the nonconstructive 1-round universe+player reduction of Corol-
lary 4.10 using the composition of Lemma 4.15. Specifically, we let p1 = p, n1 = n, β1 = β, µ1 = µ
and for i = 1, . . . , t (for t to be determined below), and we let Πi be a [(pi, ni) 7→ (pi+1, ni+1)]-
universe+player reduction protocol that is [(βi, µ) 1−εi7→ (βi + θi, µi + θi)]-resilient obtained from
Corollary 4.10 for appropriate choices of the parameters. Specifically, Corollary 4.10 allows us to
take

εi = ε/ max{log ni−1, pi−1}
θi = θ/ max{log log ni−1, log pi−1}
βi = βi−1 + θi−1

µi = µi−1 + θi−1

pi = poly(log pi−1, log(1/εi), 1/θi) = poly(log pi−1, log log ni−1, log(1/ε), 1/θ)
ni = poly(log ni−1, log(1/εi), 1/θi, pi−1) = poly(pi−1, log ni−1, log(1/ε), 1/θ).

We compose these protocols to get Π1 ◦ . . . ◦ Πt, a [(p, n) 7→ (p′, n′)]-universe+player reduction
protocol. We can choose t so that p′ = pt = poly(log(1/ε), 1/θ), n′ = nt = poly(log(1/ε), 1/θ), and
t = max{log∗ n, log∗ p} − log∗ n′ + O(1). (Specifically, this follows by applying Lemma A.1 to the
sequences ai = pi and bi = ni and function f(x) = ((log x) · log(1/ε) · 1/θ)c.)

By Lemma 4.15, Π1 ◦ . . . ◦Πt is [(β, µ) 1−ε′7→ (β + θ′, µ + θ′)]-resilient for all β > 0, for

θ′ =
t∑

i=1

θi = O(θt) ≤ θ,
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and similarly ε′ ≤ ε.
Note that in round i, the randomness complexity is (log ni +O(log(1/εi)+log(1/θi)))/(1−βi)+

pi log pi + pi/(1− βi). Thus, the total randomness complexity is (log n + o(log n) + O(t(log(1/ε) +
log(1/θ))))/(1− β) + O(p log p + p/(1− β)).

5 Putting It Together

Theorem 5.1 (Thm. 2.6, restated) For all constants k ∈ N, k > 0 and δ > 0, there exists a
constant ε < 1 and a (p, n)-selection protocol with the following properties:

(i) The protocol has max(log∗ p, log∗ n) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for α = 1/(k + 1) + δ and µ = 1/k − δ.

(iii) The randomness complexity of the protocol is (log n)/α + o(log n) + O(p log p).

Proof: The claimed protocol is the composition of two protocols. Let α = 1/(k + 1) + δ, and
µ = 1/k−δ. Let Π1 be the protocol of Theorem 4.16, with θ = δ/2 and ε1 > 0 an arbitrary constant.
Then Π1 is a [(p, n) 7→ (p′, n′)]-universe+player reduction protocol that is [(1− α, µ) 1−ε17→ (1− α +
θ, µ+θ)]-resilient for every µ > 0, where p′ and n′ are constants. Moreover, the number of rounds is
r = max{log∗ n, log∗ p}+ O(1) and the randomness complexity is (log n)/α + o(log n) + O(p log p).

With probability at least ε1, the fraction of good players output by Π1 is at least α′ = 1/(k +
1) + δ/2, and the fraction of bad elements of the universe is at most µ′ = 1/k − δ/2. Since
b1/α′c ≤ d1/µ′e − 1, we now can apply Π2, the protocol of Lemma 3.2. Π2 is a (p′, n′)-selection
protocol that is (1 − α′, µ′, ε2)-resilient for some constant ε2 < 1. Note that Π2 consists of one
round, and its randomness complexity is constant.

Combining Π1 with Π2, we get a (p, n)-selection protocol that is (1−α, µ, (1− ε1) · ε2)-resilient.
The number of rounds is max{log∗ n, log∗ p}+O(1), and the randomness complexity is (log n)/α+
o(log n) + O(p log p).

Next we prove Theorems 2.8 and 2.9 that optimize the relationship between the density µ of
the bad set and the error probability ε. First, we present a version where we do not reduce the
number of players.

Theorem 5.2 (Thm. 2.8, restated) For all µ, α > 0, p, n ∈ N there exists a (p, n)-selection
protocol with the following properties:

(i) The protocol has log∗ n− log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for

ε = µα ·O
(

1
α
· log

1
µ

+ (1− α)p
)1−α

· 2(1−α)p.

(iii) The randomness complexity is [log n+o(log n)+O(p+log(1/µ))]/α+log(1/(1−α))+O(p log p).
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To prove this theorem, we use the protocol of Lemma 3.1 as the final one-round protocol. In
order for this to work well, we need to reduce the size of the universe to n′ ≈ 1/µ. Lemma 3.1 also
requires that the universe size n′ is larger than the number of players (indeed, n′ must be some
natural number to the power of p), which results in the bad dependence of ε on p above. However,
when the number p of players and the fraction α of honest players are constant, the bound becomes
ε = Õ(µα), which nearly matches the lower bound of ε ≥ µα proven in [GGL98] (see Theorem 7.3).

Proof: In the proof we often write β = 1 − α to denote the fraction of dishonest players. We
can assume without loss of generality that n ≥ 1/µ, otherwise we can trivially output an arbitrary
element of [n]. Our aim will be to reduce the size of the universe to n2 ≈ 1/µ. This is done in two
steps:

1. First, we reduce the size of the universe to n1 = poly(1/µ) using the protocol of Theorem 4.16
just as a [(p, n1) 7→ n2]-universe reduction protocol (ignoring the player reduction). The
parameters of the protocol will be ε1 = µ and θ1 = µ, so the protocol is [(β, µ) 1−ε17→ µ + θ1]-
resilient for every µ > 0, with

n1 = poly(1/µ).

The number of rounds of Π1 is t = log∗ n− log∗(1/µ) + O(1), and its randomness complexity
is

log n + o(log n) + O(t log(1/µ) + p))/α + O(p log p)
= log n + o(log n) + O(log(1/µ) + p))/α + O(p log p),

where we use the fact that t log(1/µ) = O(log(1/µ))+o(log n) for t = log∗ n−log∗(1/µ)+O(1).

2. Let µ1 = µ+θ1 = 2µ. We now reduce the size of the universe from n1 to n2 using the protocol
of Theorem 4.14: a 1-round [(p, n1) 7→ n2]-universe reduction protocol that is [(β, µ1)

1−ε27→
µ1 + θ2]-resilient with ε2 = µα and θ2 = µ1 = 2µ. Theorem 4.14 allows us to choose any
n2 ≥ v, where

v = O

(
1
µ1
·
(

log
1
ε2

+
β

α
·
(

log n1 + log
1
β

)
+ β · p

))

= O

(
1
µ
·
(

α log
1
µ

+
β

α
·
(

log
1
µ

+ log
1
β

)
+ β · p

))

= O

(
1
µ
·
(

1
α
· log

1
µ

+ βp

))
.

We choose n2 ∈ [v, 2p ·v] to be the smallest p’th power of an integer greater than or equal to v.
The randomness complexity is [O(log(1/µ))+log(1/β)]/α = O(log(1/µ)/α)+log(1/β)+O(1),
where we use the fact that β = 1− α.

Composing the above two protocols as in Lemma 4.15, we are in the following situation: There
is a universe of size n2, out of which a µ2 = µ + θ1 + θ2 = O(µ) fraction of the elements are in
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the bad set. Now, since we chose n2 to be an integer to the power of p, we can use the protocol of
Lemma 3.1. This is a (p, n2)-selection protocol that is (β, µ2, ε3)-resilient. Note that

ε3 = nβ
2 · µ2

≤ (v · 2p)β ·O (µ)

= O

(
1
µ
·
(

1
α
· log

1
µ

+ βp

)
· 2p

)β

·O(µ)

= O

(
µα ·

(
1
α
· log

1
µ

+ βp

)β

· 2βp

)
.

The randomness complexity of this last sub-protocol is log n2 ≤ O(p + log(1/α) + log(1/µ)).
Putting all three parts together, we get a (p, n)-selection protocol that is (β, µ, ε)-resilient for

ε = ε1 + ε2 + ε3 = O(ε3). The number of rounds of the protocol is t = log∗ n − log∗(1/µ) + O(1),
and the randomness complexity is [log n + o(log n) + O(p + log(1/µ))]/α + log(1/β)O(p log p).

Now we eliminate the bad dependence on p by combining the above with a player reduction, at
the price of a slightly worse error probability of ε = µΩ(α).

Theorem 5.3 (Thm. 2.9, restated) There is a universal constant c such that for all p, n ∈ N,
µ, α > 0 satisfying α ≥

√
c log log(1/µ)/ log(1/µ), there exists a (p, n)-selection protocol with the

following properties:

(i) The protocol has max{log∗ p, log∗ n} − log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for ε = µΩ(α).

(iii) The randomness complexity is [log n + o(log n) + O(p)]/α + O(p log p) + poly(1/α, log(1/µ)).

Proof: In what follows, we use α and β interchangeably, with α = 1 − β. The protocol is
essentially the same protocol as in Theorem 2.8, except that we precede it with an appropriate
player reduction.

1. For the first stage, we use the protocol of Theorem 4.16, used only as a [p 7→ p1]-player
reduction protocol (ignoring the universe reduction). We use parameters ε1 = µ and θ1 = α/3,
so the protocol is [β 1−ε17→ β + θ1]-resilient for every µ > 0, with

p1 = poly(1/α, log(1/µ)).

The number of rounds of Π1 is t = log∗ p− log∗(1/µ) + O(1), and its randomness complexity
is [log n + o(log n) + O(t · (log(1/µ) + log(1/α)) + p)]/(1− β) + O(p log p).

2. Let β2 = β + θ1, α2 = 1− β2 = 2α/3. Π2 is the protocol of Theorem 4.4, a [p1 7→ p2]-player
reduction protocol that is [β2

1−ε27→ β2+θ2]-resilient with ε2 = µα/c and θ2 = α/3 for a constant
c to be determined later. The resulting number of players is

p2 = O

(
α2

θ2
2

(
log

1
ε2

+ log p1

))

= O

(
1
α

(
α

c
log

1
µ

+ log
1
α

+ log log
1
µ

))

= log
1
µ

+ O

(
1
α

log
1
α

+
1
α

log log
1
µ

)
,
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for a sufficiently large choice of the constant c. The randomness complexity is p1 log p1 =
poly(1/α, log(1/µ)).

3. Now we do a universe reduction in the same way as Steps 1 and 2 of the proof of Theorem 2.8,
except that we run it using only the p2 players selected above. Recall that these steps reduce
the universe size to n2, where n2 is the smallest number that is an integer to the power of p2

greater than or equal to

v = O

(
1
µ
·
(

1
α
· log

1
µ

+ βp2

))

=
1
µ
· poly

(
1
α

, log
1
µ

)
.

Now we observe that

2p2 =
1
µ
·
(

1
α
· log

1
µ

)O(1/α)

≥ v,

so in fact n2 = 2p2 . This leaves us with a universe of size n2, out of which a µ2 = µ+θ1 +θ2 =
O(µ) fraction of the elements are in the bad set.

4. The protocol now concludes in the same way as the proof of Theorem 2.9, using the protocol
of Lemma 3.1. This is a (p2, n2)-selection protocol that is (β3, µ2, ε3)-resilient, where

ε3 = nβ3
2 · µ2

≤ (2p2)β ·O(µ)

=
1

µβ3
·
(

1
α
· log

1
µ

)O(β3/α)

·O(µ)

= µ1−β3 ·
(

1
α
· log

1
µ

)O(1/α)

= µα/3 ·
(

1
α
· log

1
µ

)O(1/α)

.

The randomness complexity of this sub-protocol is log n2 = p2.

Putting everything together, we get a (p, n)-selection protocol that is (β, µ, ε)-resilient for

ε = ε1 + ε2 + ε3 = µΩ(α) ·
(

1
α
· log

1
µ

)O(1/α)

= µΩ(α),

when α ≥
√

c log log(1/µ)/ log(1/µ) for a large enough constant c.
Finally, in order to save on the round and randomness complexity, note that the player reduction

in Step 1 can be done in parallel with the universe reduction in Step 3. So this yields a protocol
with t = max{log∗ p, log∗ n}−log∗(1/µ)+O(1) rounds, where the randomness complexity is [log n+
o(log n) + O(p)]/α + O(p log p) + poly(1/α, log(1/µ)).
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6 Explicit Protocols

We now give explicit versions of the above results. The first is the explicit version of Theorem 2.6.

Theorem 6.1 For all constants k ∈ N+, γ > 0, and δ > 0, there exists a constant ε < 1 such that
for every n, p ∈ N, there is an explicit (p, n)-selection protocol with the following properties:

(i) The protocol has max(log∗ p, log∗ n) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for α = 1/(k + 1) + δ and µ = 1/k − δ.

(iii) The randomness complexity of the protocol is (log n)1+γ + O(p log p).

Apart from its explicitness, note that the randomness complexity of the above theorem is now
(log n)1+γ for an arbitrarily small constant γ, rather than (1 + o(1))(log n)/α. Intuitively, this
occurs because the explicit sampler we use (based on an extractor of [RRV99]) only has randomness
complexity polynomially close to optimal. It is possible to remedy this and obtain a randomness
complexity of (1 + o(1)) log n by using other samplers (e.g. based on the extractors of [RRV02])
for the first few rounds of universe reduction, but this creates some messy constraints on the other
parameters, so we omit a formal statement.

We also give explicit versions of Theorem 2.8 and Theorem 2.9.

Theorem 6.2 For every constant γ > 0, and every p, n ∈ N, µ, α > 0, there exists a (p, n)-selection
protocol with the following properties:

(i) The protocol has log∗ n− log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, ε)-resilient for

ε = µα ·O
(

1
α
· log

1
µ

+ (1− α) p

)1−α

· 2(1−α)p.

(iii) The randomness complexity is [(log n)1+γ+O(p+log(1/µ))]/α+O(log(1/(1−α)))+O(p log p).

(iv) The protocol is explicit given appropriate samplers of size

s = poly(2p, 1/µ, log(3) n)1/(α).

which can be obtained probabilistically in time O(s) and deterministically in time 2O(s).

Theorem 6.3 There is a universal constant c such that for every constant γ > 0 and every p, n ∈
N, µ, α > 0 satisfying α ≥

√
c log log(1/µ)/ log(1/µ), there exists a (p, n)-selection protocol with

the following properties:

(i) The protocol has max{log∗ p, log∗ n} − log∗(1/µ) + O(1) rounds.

(ii) The protocol is (1− α, µ, µΩ(α))-resilient.

(iii) The randomness complexity is [(log n)1+γ + O(p)]/α + O(p log p) + poly(1/α, log(1/µ)).
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(iv) The protocol is explicit given appropriate samplers of size

s = poly(1/µ, 1/α, log(3) n)1/α.

which can be obtained probabilistically in time O(s) and deterministically in time 2O(s).

Note that the protocols are explicit whenever s = O(log log n) (in particular, when µ and α are
constants).

6.1 Explicit Reduction Protocols

In order to prove the above theorems, we wish to make the many-round universe+player re-
duction protocol given in Theorem 4.16 explicit. Note that the player reductions (relying only
on Lemma 3.2) are already constructive, and the problem is that the nonconstructive samplers
(Lemma 4.7) used in the universe reduction of Theorem 4.8. After a few rounds of the universe
reduction, however, we can already use the nonconstructive samplers: because the universe is small
(i.e., log(3) n), we can exhaustively search all possible nonconstructive samplers until we find the
optimal one (in time polylog(n)).

For the first few rounds of the universe reduction, however, we need to use constructive samplers.
The explicit construction we will use is the sampler-equivalent of an extractor construction of Raz,
Reingold and Vadhan [RRV99] (where the equivalence of extractors and samplers is given by [Zuc97];
see Appendix B).

Lemma 6.4 (constructive samplers ([RRV99])) For every constant 1 > δ > 0 and every n ∈
N, ε, θ ≥ 1/n, and r ≥ 2(log n)1+δ

/ε, there exists a (θ, ε) sampler Samp : [r] → [n]t with

t = poly
(

1
θ
, log n

)
.

As before, this sampler yields a 1-round universe reduction protocol. If we use this sampler in
Lemma 4.6, and fix some parameters, we get the following constructive protocol.

Theorem 6.5 (constructive 1-round universe reduction) For every constant 1 > δ > 0, and
every n ∈ N, p ≤ log n, ε, θ ≥ 1/n, β ≥ 1/p, there exists an explicit 1-round [(p, n) 7→ n′]-universe
reduction protocol that is [(β, µ) 1−ε7→ µ + θ]-resilient for every µ > 0, with

n′ = poly
(

log n,
1
θ

)
.

Moreover, the randomness complexity is (log n)1+δ/(1− β) + p.

We now wish to iterate this constructive 1-round universe-reduction protocol, along with an
appropriate player-reduction protocol, in order to obtain a constructive analogue of Theorem 4.16.
However, in order to keep the expressions simple, we give two different constructive variants of
Theorem 4.16 with parameters tailored to our needs. The first will be used in the protocol of
Theorem 6.1, and the second will be used in the protocols of Theorems 6.2 and 6.3.
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Theorem 6.6 (constructive many-round universe+player reduction for constant parameters)
For all constants β, ε, θ, δ > 0, there exist constants p′, n′ ∈ N such that for every p, n ∈ N, there
is an explicit [(p, n) 7→ (p′, n′)]-universe+player reduction protocol that is [(β, µ) 1−ε7→ (β + θ, µ + θ)]-
resilient for every µ > 0. Moreover, the number of rounds is t = max{log∗ n, log∗ p}− log∗ n′+O(1)
and the randomness complexity is (log n)1+δ + O(p log p).

Proof: The protocol proceeds in stages. First, we iteratively apply the player reduction protocol
of Theorem 4.4 to reduce the number of players to a constant p′ = poly(log(1/ε), 1/θ) = O(1), so
that the fraction of bad players increases from β to at most β + θ/2, except with probability ε/4.
The iteration is done as in Theorem 4.16, except that we disregard the universe reduction.

Second, we reduce the size of the universe to

n′ = poly
(

1
θ
, log(3) n

)
= poly

(
log(3) n

)
,

so that with probability at least 1− ε/4, the density of the bad set increases by at most θ/2.s This
is done by iteratively applying the protocol of Theorem 6.5 three times, each time with errors ε/12
and θ/6. Since µ, θ, ε, and β are all constants, the bound on n′ follows.

Note that we are now in the following situation, with probability at least 1− ε/2: there are a
constant p′ players, out of which at most a β′ = β + θ/2 fraction are adversarial. The universe is
of size n′, and the fractional size of the bad set is at most µ′ = µ + θ/2.

We now continue as in the proof of Theorem 4.16, with error parameters ε′ = ε/2 and θ′ = θ/2.
Recall that in the proof of Theorem 4.16, we used nonconstructive samplers. For this protocol, we
use exhaustive search to find these optimal samplers of the appropriate size. We need samplers of
size at most

s = 2p′ · poly(n′, 1/θ, 1/ε)1/(1−β) = poly(log(3) n),

which can be obtained in time 2O(s) = o(log n). Thus, the protocol is explicit. In order to get the
desired round complexity, note that we can do the player reduction and the universe reduction in
parallel, as in Theorem 4.16.

The following theorem will be used in the protocols of Theorems 6.2 and 6.3. We note that the
range of parameters for which we prove this theorem and some of the constraints obtained are not
optimal, as our emphases here are clarity and readability.

Theorem 6.7 (constructive many-round universe+player reduction for µ parameters)
For every constant δ > 0, and every n, p ∈ N, ε = θ = µ > 0, 0 < β < 1 − µ, there exists a
[(p, n) 7→ (p′, n′)]-universe+player reduction protocol that is [(β, µ) 1−ε7→ (β + θ, µ + θ)]-resilient with

n′ = poly(1/µ)
p′ = poly(1/µ).

Moreover, the number of rounds is t = max{log∗ n, log∗ p} − log∗ n′ + O(1) and the randomness
complexity is [(log n)1+δ +O(p+ t · log(1/ε)+ t · log(1/θ))]/(1−β)+O(p log p). Finally, the protocol
is explicit given appropriate samplers of size

s = poly(2min{p,poly(1/µ)}, 1/µ, log(3) n)1/(1−β).

These samplers can be obtained probabilistically in time O(s) and deterministically in time 2O(s).
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Proof: The protocol proceeds as in Theorem 6.6. First, we reduce the number of players to
p′ = min{p, poly(1/µ)} so that the fraction of bad players increases from β to at most β′ = β+µ/2,
except with probability µ/4, by iteratively applying the player reduction protocol of Theorem 4.4.
We then reduce the size of the universe to

n′ = max{2p′ , poly(1/µ, log(3) n)},

so that the density of the bad set increases by at most µ/2.
Again, this is done by iteratively applying the one-round universe+player reduction three times,

as in the proof of Theorem 4.16. Instead of using the protocol of Theorem 4.8, we use the protocol
of Theorem 6.5. At each one of the three iterations, we first check that the constraints on the
number of players (p′), the density of the bad set (O(µ)), and the current size of the universe are
satisfied. If this is not the case (and we can not apply the universe reduction), then the universe
size is already of size at most n′ so we can stop.

As in the previous proof, we are now in the following situation, with probability at least 1−µ/2:
there are p′ players, out of which at most a β′ = β + µ/2 fraction are adversarial. The universe is
of size n′, and the density of the bad set is at most µ′ = 3µ/2. Note that

We now continue as in the proof of Theorem 4.16, with error parameters ε/2 and θ/2. Recall
that in the proof of Theorem 4.16, we used nonconstructive samplers. For this protocol, we use
exhaustive search to find optimal samplers of the appropriate size. We need samplers of size

s = 2p′ · poly(n′, 1/ε, 1/θ)1/(1−β′)

= poly(2p′ , 1/µ)1/(1−β)

= poly(2min{p,poly(1/µ)}, 1/µ, log(3) n)1/(1−β)

which can be obtained probabilistically in time O(s) and deterministically in time 2O(s).

6.2 Putting It Together

The proof of Theorem 6.1 follows exactly the same proof as that of Theorem 2.6, except that it
uses the protocol of Theorem 6.6 rather than that of Theorem 4.16.

For Theorems 2.8 and 2.9, we also need a density-tailored sampler that attains parameters
as in Lemma 4.13. Since we do not know explicit constructions that do this, we also obtain the
density-tailored sampler by exhaustive search.

We now prove Theorem 6.2.

Proof: This is the same proof as that of Theorem 2.8, with two differences. Instead of using the
protocol of Theorem 4.16 in step 1, use the protocol of Theorem 6.7. (Note that we may assume
that α ≥ µ, as required by Theorem 6.7, because otherwise our desired bound on ε is greater
than 1.) Second, in step 2, exhaustively search over all possible density-tailored samplers of size
2p · poly(1/µ)1/(1−β) to find the optimal. The sampler size listed in the statement of Theorem 6.2
is greater than both this bound and the sampler size required for Theorem 6.7.

The proof of Theorem 6.3 is the same as that of Theorem 2.9, with the same differences as in
the proof of Theorem 6.2. We need samplers of size at most

s = poly(2p2 , 1/µ, log(3) n)1/α,
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where p2 is the number of players after the player reduction done at the start of the proof of
Theorem 2.9, so we have

2p2 =
1
µ
·
(

1
α
· log

1
µ

)O(1/α)

,

and thus
s = poly(1/µ, 1/α, log(3) n)1/α.

7 Lower Bounds

In this section we state known lower bounds for different parameters of random selection, and how
they relate to our protocols.

7.1 Round Complexity

Theorem 7.1 ([SV05]) For any (2, n)-selection protocol that is (1/2, µ, ε)-resilient for constants
µ > 0 and ε < 1, the round complexity is at least (log∗ n− log∗ log∗ n−O(1))/2.

A corollary of this theorem for the case of many parties is the following:

Corollary 7.2 For any (p, n)-selection protocol that is (β, µ, ε)-resilient with β ≥ 1/2 and for
constants µ > 0 and ε < 1, the round complexity is at least (log∗ n− log∗ log∗ n−O(1))/2.

Proof: This is a simple reduction from Theorem 7.1. Given any (p, n)-selection protocol Π that
is (β, µ, ε)-resilient with β ≥ 1/2, construct a (1/2, µ, ε)-resilient (2, n)-selection protocol by having
each of the two players simulate p/2 players in the protocol Π.

The round complexity of our protocols is max{log∗ n, log∗ p}+ O(1). For p ≤ n, this is optimal
up to a factor of 2 (for the case β ≥ 1/2), by the above corollary. It is not known whether log∗ p
rounds are necessary. Indeed, for β < 1/2, ruling out even 1-round protocols for collective coin-
flipping (i.e., random selection when n = 2) or leader election is a long-standing open problem. (It
is known that log∗ p rounds are necessary in case the players send only one bit per round [RSZ02].)

7.2 Error Probability

Theorem 7.3 ([GGL98]) For any (p, n)-selection protocol that is (1− α, µ, ε)-resilient, ε ≥ µα.

Our Theorem 2.8 achieves a nearly matching bound of ε = Õ(µα) in case the number of players
is constant, α = Ω(1) and µ = o(1). For a nonconstant number of players, Theorem 2.9 achieves
ε = µΩ(α), which is tight up to a constant factor in the exponent.

7.3 µ versus α

Theorem 7.4 ([Fei99], Thm. 4) Suppose that α, µ > 0 satisfy b1/αc > d1/µe − 1. Then in any
(p, n)-selection protocol, there exists a set H ⊆ [p] of at least αp players and a set T ⊆ [n] of density
at least 1− µ such that no matter what deterministic strategies the players in H play, the players
in [p] \H have a strategy to force the outcome to land outside of T .
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Proof: Suppose that b1/αc > d1/µe − 1. Assume towards a contradiction that there is some
(p, n)-selection protocol Π such that for all H ⊆ [p] of at least αp players and for all T ⊆ [n] of
density at least 1− µ, the players in H have a deterministic strategy to force the outcome into T .

Since the subsets H have density at least αp, there exist h = b1/αc such subsets that are
mutually disjoint. Call them H1, . . . , Hh. Since the sets T have density at least 1− µ, there exist
t = d1/µe such subsets that have no common intersection, say T1, . . . , Tt.

Π guarantees that for every i ∈ {1, . . . , t}, there exists a strategy for the players in Hi to force
the output into Ti. This is impossible, however, since there are no elements in the intersection of
the Ti’s.

We use this to deduce that the tradeoff achieved in our Theorem 2.6 between the fraction α of
honest players and the density µ of the bad set is nearly optimal.

Corollary 7.5 For any (p, n)-selection protocol that is (1 − α, µ, ε)-resilient with ε < 1, b1/αc ≤
d1/µe − 1.

Proof: Let Π be a (p, n)-selection protocol that is (1 − α, µ, ε)-resilient with ε < 1. Suppose,
for sake of contradiction, that b1/αc > d1/µe − 1, and let H and T be the set of players and bad
set guaranteed by Theorem 7.4. Now we view Π as inducing a game between two players A and
B, where A controls the players in H and B controls the players in [p] \ H, and A wins if the
outcome is in T and B wins if the outcome is in [n] \T . A basic result in game theory [NM44] says
that in every finite, full-information two-player game such as this, one of the players has a winning
strategy, i.e., a strategy that wins regardless of how the other player plays. Theorem 7.4 says that
A does not have a winning strategy in this game. Thus, B must have a winning strategy. That
is, if the players outside H cheat, they can force the outcome to land in T , regardless of how the
players in H play (in particular, if they play honestly). Since there are at most (1 − α)p players
outside H, and T has density at most µ, this contradicts the fact that Π is (1 − α, µ, ε)-resilient
with ε < 1.

7.4 Randomness and Communication Complexity

Theorem 7.6 For any (p, n)-selection protocol that is (1 − α′, µ, ε)-resilient for ε < 1, the ran-
domness and communication complexities are at least

max
{

(1− α′)p,
1− ε

α
log

µn

ε

}
,

where α = bα′pc/p.

To prove this theorem, we will use need a few basic notions from information theory. (See
[CT91] for more details.) The entropy of a discrete random variable X is defined as H(X) =
Ex←X [log(1/Pr[X = x])]. The entropy of X can be no larger than log |supp(X)|. In addition,
for any deterministic function f , H(f(X)) ≤ H(X). For two jointly distributed random variables
(X,Y ), the conditional entropy of X given Y is H(X|Y ) = Ey←Y [H(X|Y = y)]. The “chain rule”
for entropy says that H(X, Y ) = H(Y ) + H(X|Y ).
We now prove Theorem 7.6.
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Proof: We will prove that the random variable M denoting all of the messages sent when the
honest parties play must have entropy at least (1 − ε)/(α) log(µn/ε). Then the communication
and randomness complexities must be at least as large, because the messages are a deterministic
function of each of these.

Let (M1, . . . , Mr) denote the individual messages sent in the protocol. Without loss of generality,
we assume that in each round i, only one player, say number p(i), sends a message. By the chain
rule for entropy, we have H(M) = H(M1) + H(M2|M1) + · · ·+ H(Mr|M1, . . . , Mr−1).

We will describe an adversary strategy that reduces the entropy of the communication by a
factor of α. The adversary is obtained by the probabilistic method. First we choose a random
subset Q of (1−α)p players to corrupt. Then the adversary A will compute its messages as follows.
For each round i such that p(i) ∈ Q and each history (m1, . . . ,mi−1), we select A(m1, . . . , mi−1)
according to the distribution Mi|M1=m1,...,Mi−1=mi−1 . This is done independently for each history.
Note that here we are describing the process of selecting the adversary’s next-message function A.
Once this function is selected, the adversary is deterministic.

Observe that for every fixed corruption set Q, if we choose A according to the above distribution
and run the protocol with A playing against the honest players, the messages sent are distributed
identically according to the honest-distribution M . Thus, we can consider the joint distribution
(Q,A, M1, . . . , Mr). Now, observe that:

H(M |Q,A) =
r∑

i=1

H(Mi|M1, . . . , Mi−1, Q, A)

=
r∑

i=1

E
q←Q

[H(Mi|M1, . . . , Mi−1, A, Q = q)]

=
r∑

i=1

α ·H(Mi|M1, . . . , Mi−1)

≤ α ·H(M).

The second-to-last inequality follows because H(Mi|M1, . . . , Mi−1, A, Q = q) equals 0 if i ∈ Q
because the adversary is deterministic, and equals H(Mi|M1, . . . , Mi−1) otherwise, because Mi is
played by an honest player and the history (M1, . . . , Mi−1) has the same distribution as if all players
were honest (even when we condition on Q = q).

By averaging, we can fix Q = q and A = a such that H(M |Q = q,A = a) ≤ α ·H(M). With
this adversary, the total amount of entropy going into the protocol is at most αH(M). How much
entropy is output by the protocol? Recall that we assumed that Π is a (p, n)-selection protocol
that is (1 − α′, µ, ε)-resilient for ε < 1, and let X be the output distribution of Π. We need the
following claim:

Claim 7.7
H(X) ≥ (1− ε) log

µn

ε
.

Proof: Let S ⊂ [n], |S| = µn have maximal weight over all sets of size µn. Note that the resilience
of Π guarantees that Pr [X ∈ S] ≤ ε. Then for all x 6∈ S, Pr [X = x] ≤ ε/(µn). This is due to the
fact that there exists some y ∈ S such that Pr [X = y] ≤ ε/(µn) (since the total probability is ε,
and there are µn elements). Thus, if there were some x 6∈ S such that Pr [X = x] > ε/(µn), we
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could define S′ = S ∪ {x} \ {y}. But |S′| = µn and Pr [X ∈ S′] > Pr [X ∈ S], contradicting the
maximality of S. Thus, for all x 6∈ S, Pr [X = x] ≤ ε/(µn).

We can now compute the entropy of X.

H(X) = −
∑

x∈supp(X)

Pr [X = x] log Pr [X = x]

≥ −
∑

x 6∈S

Pr [X = x] log Pr [X = x]

≥ log
µn

ε

∑

x 6∈S

Pr [X = x]

≥ (1− ε) log
µn

ε
.

It must be the case that H(M) ≥ H(X), and so

H(M) ≥ 1− ε

α
log

µn

ε
.

Now we show that a randomness complexity of (1 − α′)p is necessary. Again suppose this is
not the case, and there exists some protocol Π that is (1 − α′, µ, ε)-resilient for ε < 1, but with
randomness complexity r < (1−α)p. Consider some run of the protocol Π, and suppose that each
random choice Cj was set to cj . Since there are at most r Cj ’s, the number of players that actually
made a choice in the run of the protocol is at most r. Now consider the adversary that corrupts
these r players, and sets their random choices to cj . Running the protocol with this adversary
yields a fixed output, since there are no random choices made. Clearly, such a protocol can not be
(r/p, µ, ε)-resilient for ε < 1, but the resilience guarantees that it is (1 − α′, µ, ε)-resilient. Thus,
r ≥ (1− α′)p. A similar argument works for the communication complexity.

The randomness complexity of the protocol given in Theorem 2.6 is (log n/α) + o(log n) +
O(p log p). In terms of the dependence on n, this is optimal up to lower-order terms. The de-
pendence on p is within a logarithmic factor. It would be interesting to improve the randomness
complexity to p, or to show that p log p is necessary.
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A Miscellaneous

Lemma A.1 Suppose a1, a2, . . . and b1, b2, . . . are sequences of real numbers and f is a monotone
non-increasing function such that ai ≤ max{f(ai−1), f(f(bi−1))} and bi ≤ max{ai−1, f(bi−1)} for
all i. Then at, bt+1 ≤ max{f (t−1)(a1), f (t−1)(b1)} for all t ≥ 2.

Proof: The lemma is proved by induction on t. For the case t = 2, we are given that

a2 ≤ max{f(a1), f(f(b1))} ≤ max{f(a1), f(b1)}

by the monotonicity of f . Also,

b3 ≤ max{a2, f(b2)} ≤ max{max{f(a1), f(b1)}, f(a1), f(f(b1))} ≤ max{f(a1), f(b1)}.

Now assume the lemma holds for all 2 ≤ i ≤ t− 1. We will prove the lemma for i = t.

at ≤ max{f(at−1), f(f(bt−1))}
≤ max{f(f (t−2)(a1)), f(f (t−2)(b1)), f(f(f (t−3)(a1))), f(f(f (t−3)(b1)))}
= max{f (t−1)(a1), f (t−1)(b1)}.
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In addition,

bt + 1 ≤ max{at, f(bt)}
≤ max{f (t−1)(a1), f (t−1)(b1), f(f (t−2)(a1)), f(f (t−1)(b1))}
= max{f (t−1)(a1), f (t−1)(b1)}

as claimed.

B Connection Between Extractors and Samplers

In this section we sketch the connection between extractors and samplers, as shown by Zuckerman
[Zuc97]. First, we need a couple of definitions.

Definition B.1 (statistical difference) For two distributions X and Y over some finite domain,
denote the statistical difference between them by ∆(X,Y ), where:

∆(X, Y ) =
1
2

∑

i∈supp(X∪Y )

|Pr [X = i]− Pr [Y = i] |.

X and Y are ε-close if ∆(X, Y ) ≤ ε.

We also need a measure of the randomness of a distribution.

Definition B.2 (min-entropy) The min-entropy of a distribution X, denoted by H∞(X), is de-
fined as

H∞(X) = min
i∈supp(X)

log
1

Pr [X = i]
.

Definition B.3 (extractor) Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if, for any
distribution X with H∞(X) ≥ k, when choosing x according to X and r uniformly at random from
{0, 1}d, the distribution of Ext(x, r) is ε-close to uniform.

The connection between extractors and samplers is given by two lemmas:

Lemma B.4 Let Ext : {0, 1}`×{0, 1}d 7→ {0, 1}m be a (k, ε)-extractor. Then Ext is also a (2k−`ε)-
sampler Samp : [R] → [N ]T for R = 2`, N = 2m, and T = 2d.

Proof: Suppose we are given a (k, ε)-extractor Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m. We can view
this as a sampler Samp : [R] → [N ]T for R = 2`, N = 2m, and T = 2d as follows: on input x ∈ [R],
Samp(x) = {s|s = Ext(x, i), i ∈ {0, 1}d}.

Now suppose that Samp is not an (ε, 2k−`)-sampler. This means that there exists some S ⊆ [N ]
such that

Pr
(i1,...,it)←Samp(UR)

[
#{j : ij ∈ S}

T
>
|S|
N

+ ε

]
>

2k

2`
.

Thus, there exists some set of 2k x’s for which

#{s|s = Ext(x, i), i ∈ {0, 1}d}
T

>
|S|
N

+ ε.
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Denote by X the uniform distribution over these x’s, and note that H∞(X) = k. However, we
claim that Ext(X,U{0,1}d) can not be ε-close to uniform. Consider the following statistical test:
f(y) = 1 if y ∈ S, and f(y) = 0 otherwise. Then

∣∣∣Pr
[
f(U{0,1}m) = 1

]− Pr
[
Ext(X, U{0,1}d)

]
= 1

∣∣∣ > ε,

contradicting the assumption that Ext is a (k, ε)-extractor.

Lemma B.5 Let Samp : [R] → [N ]T be a (ε, 2k−`)-sampler, with R, N , and T as above. Then
Samp is also a (k + log(1/ε), 2ε)-extractor Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m.

Proof: Given a statistical test T ⊆ {0, 1}m, let

BT
def=

{
x ∈ {0, 1}` :

∣∣∣∣∣ Pr
U{0,1}d

[Ext(x, U{0,1}d) ∈ T ]− |T |
n

∣∣∣∣∣ > ε

}
.

Since Samp is a (2k/2`, ε)-sampler we know that PrUR
[UR ∈ BT ] ≤ 2k−`, so |BT | ≤ 2k.

Let X be a (k + log(1/ε)) source. We have:

Pr
X

[X ∈ BT ] ≤ 2−(k+log(1/ε)) · |BT | ≤ ε

⇒ Pr
X,U{0,1}d

[
Ext(X, U{0,1}d) ∈ T

]
≤ Pr

X
[X ∈ BT ] · 1 + Pr

X
[X 6∈ BT ] ·

( |T |
N

+ ε

)
≤ |T |

N
+ 2ε

⇒ Pr
X,U{0,1}d

[
Ext

(
X, U{0,1}d

)
∈ T

]
− |T |

N
≤ 2ε.

Since T was an arbitrary statistical test, we can also apply the above inequality to T to get
|PrX,U{0,1}d

[Ext(X, U{0,1}d) ∈ T ] − |T |/N | ≤ 2ε. Since T was an arbitrary subset of {0, 1}m, we
have that Ext is a (k + log(1/ε), 2ε)-extractor.
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