Randomness is Linear in Space*

Noam Nisan | David Zuckerman ¥

Abstract

We show that any randomized algorithm that runs in space S and time 7" and uses poly(S) random
bits can be simulated using only O(S) random bits in space S and time 7"+ poly(S). A deterministic
simulation in space S follows.

Of independent interest is our main technical tool: a procedure which extracts randomness from a
defective random source using a small additional number of truly random bits.

1 Introduction

The relative power of deterministic and randomized algorithms is a basic question in complexity
theory. Despite much effort very little is known. In this paper we consider this question when the
complexity measured is space. Is randomized-space(S) stronger than deterministic-space(S)?

While several nontrivial deterministic simulations of randomized-space are known [BNS, N1, N2], this
question is still completely open. No simulation of randomized-space(.S) is known which uses less than
O(S?) deterministic space, a simulation which can be achieved by Savitch’s theorem [S].

Indeed, from Savitch’s proof it follows that a language accepted by a randomized-space(S) machine
using R random bits is also accepted by a deterministic-space(Slog(R/S)) machine. There is only one
result that improves this bound for some R. Namely, Ajtai, Komlos, and Szemeredi showed that any
randomized-space(S) algorithm using only O(S52/log S) random bits can be simulated deterministically
in space(S) [AKS]. In this paper we improve upon this result and give a deterministic simulation of
algorithms using poly(S) random bits.

What we obtain is a pseudo-random generator. Our generator converts O(S) truly random bits to
poly(S) bits that look random to all space(S) machines. The generator can be computed in space S and
time polynomial in S. It is thus possible to reduce the number of random bits used by any space(S)
algorithm from poly(S) to O(S) without a large penalty in time or space. Our main theorem can be
stated as:

*This is modified from the version that appears in Journal of Computer and System Sciences, 52(1):43-52, 1996. The
only changes are a simplified proof of Lemma 13 and updated references. A preliminary version of this paper titled “More
Deterministic Simulation in Logspace” appeared in the 25th ACM Symposium on Theory of Computing, 1993, pp. 235-244.

fInstitute of Computer Science, Hebrew University, Jerusalem. Supported by USA-Israel BSF grants 89-00126 and
92-00043 and by a Wolfson research award administered by the Israeli Academy of Sciences. Part of this research was done
while the author visited IBM Almaden.

iDept. of Computer Sciences, The University of Texas at Austin, Austin, TX 78712. Most of this research was done
while the author was affiliated with MIT and supported by an NSF Postdoctoral Fellowship, NSF Grant No. 92-12184
CCR, and DARPA Grant No. N00014-92-J-1799. Part of this research was done while the author visited The Hebrew
University in Jerusalem, Princeton University through DIMACS, and the International Computer Science Institute in
Berkeley.

Theorem 1 Any randomized algorithm A that runs in space S and time T and uses poly(S) random
bits can be simulated using only O(S) random bits in space S and time T + poly(S). The distribution
of the output of the simulation is within statistical distance of exp(—S'=7) from the distribution of the
output of A. Here S = S(n) >logn, T =T(n) > n, and v > 0 is an arbitrary constant.

If one only cares about space then O(S) random bits can clearly be simulated deterministically by
running through all possibilities for the random bits.

Corollary 1 Any language accepted by a randomized Space(S) algorithm that uses only poly(S) random
bits can be accepted deterministically in Space(S).

For polynomial-time algorithms it is probably more natural to state our main result as:

Corollary 2 Any randomized polynomial time algorithm running in space S can be simulated in poly-
nomial time using only O(S + n®) random bits with statistical error exp(—n®"), for any constants
a>a >0.

Several classes of randomized algorithms run naturally in linear space and thus can be simulated
using only a linear number of random bits. Examples include walks on “rapidly mixing Markov chains”
(as in [JS]) and random generation using the “rejection method.” A particularly interesting example
is uniform generation of prime numbers which, using this corollary, can be approximated (within small
statistical distance) using a linear number of random bits (see [N1] for more details).

We remark that the results of [N1] imply that randomized space S polynomial-time algorithms may
be simulated using O(S logn) random bits, so Corollary 2 is only interesting when S = n®().

Our main technical tool is a construction of the following kind of function which we call an extractor.
To motivate this, suppose we have a set A C {0,1}" with |A| > 29", and suppose we have a random
element from A. Thus, we have dn bits of randomness, but in an unusable form. Our aim is to extract
from this distribution a nearly uniform distribution. To do this we will use a small additional number
of truly random bits.

Definition 1 A distribution D on {0,1}" is called a §-source if for all x € {0,1}", D(x) < 27",

Definition 2 Let E : {0,1}" x {0,1}} — {0,1}™. E is called a (6, €)-extractor if for every §-source
D, the distribution of E(x,y) oy induced by choosing x from D and y uniformly in {0,1}" is within
statistical distance of € from the uniform distribution (on {0,1}™ x {0,1}%.)

The Leftover Hash Lemma of [ILL] ! gives an extractor with ¢ > n. Our main construction is an
extractor with ¢t << n.

Lemma 1 For any parameters 6 = 6(n) and € = e(n) with 1/n < 6 < 1/2 and 27°" < € < 1/n, there
exists an easily computable (and explicitly given) (6, €)-extractor E : {0,1}" x {0,1}t — {0,1}™, where
t = O(loge 'log®nlog6'/8) and m = Q(6*n/logd™).

Note that the upper bounds on § and e are given only to make our expressions simpler. In fact, for
smaller ¢ and e, it is more difficult to construct the extractor, so ¢ is larger and m is smaller. For our
application we use ¢ equal to a constant and € = 1/poly(n). We therefore advise the reader to ignore
the dependence on § in the first reading,.

We also show a lower bound on the quality of any extractor: ¢t = Q(loge ! + logn) for constant
0 < 1. Thus, ignoring the dependence on §, the size of ¢ is within an O(log2 n) factor of optimal. We

'The term “Leftover Hash Lemma” was coined in [IZ], which gives a proof due to Rackoff with improved constants.

can shave off another factor of logn by using expander graphs. This improvement is not needed for our
application so we do not use it here.

In fact, one virtue of our construction is that it is elementary: the only tools we use are the Leftover
Hash Lemma and k-wise independence. Our use of these tools is based on the methods of [Z2]. Indeed,
the extractor can be viewed as a simplification and extension of the algorithms in [Z2], although in one
sense the extractor is weaker (see below).

One may think of extractors in various ways and contexts. We briefly sketch some of these below.

Hashing lemmas:

One may view the y’s as names of hash functions hy : {0,1}" — {0,1}™, by hy(z) = E(z,y). In this
context we obtain very small families of hash functions which still have good properties; specifically,
they satisfy a lemma similar to the Leftover Hash Lemma [ILL].

Expansion:

An extractor E defines in a natural way a bipartite graph on {0,1}" x {0,1}", where x € {0,1}"
is connected to z € {0,1}™ if there exists y € {0,1}' such that E(z,y) = 2. As in the constructions
of [Z1, Z2], this graph has good expansion properties, which are better than what can be obtained using
eigenvalue methods. These ideas are further used in [WZ].

Weak random sources and deterministic amplification:

Given an extractor and the first parameter = to it, an algorithm may go over all the possible values
of y. Tt is not difficult to see that this can be used to simulate BPP using a d-source [Z1, Z2], or to
do “deterministic amplification” [IZ, CoW]. For the value of ¢ we obtain, however, the running time of
this simulation will not be polynomial but only quasi-polynomial. On the other hand, our simulation
satisfies a stronger requirement: it truly approximates the acceptance probability of a BPP machine.
The result of [BGG] is similar in this regard, but does not yield an extractor.

2 Definitions and Notation

Throughout this paper, we use the convention that capital letters denote random variables, sets,
distributions, and probability spaces; other variables will be in small letters. Exceptions are R and R/,
denoting numbers of random bits, and .S, our space-bound. We often use a correspondence where the
small letter denotes an instantiation of the capital letter, e.g. & might be a particular input and X the
random variable being uniformly distributed over all inputs.

For ease of reading, we also ignore round-off errors, assuming when needed that a number is an
integer. It is not hard to see that these assumptions do not affect the validity of our arguments.

All logarithms are meant to the base 2.

Distance between Distributions
Let D1 and D9 be two distributions on the same space X. The variation distance between them is

D1 — Daof = §1£§\D1(Y)—D2(Y)|

= 3 IDi@) - Do)

zeX

A distribution D on X is called e-quasi-random (on X) if the distance between D and the uniform
distribution on X is at most e.

A convenient fact to remember is that distance between distributions cannot be created out of
nowhere. In particular if f : X — Y is any function and D;, Dy are distributions on X then

|f(D1) — f(D2)|| < ||D1— D2||. Here f(D) denotes the distribution of f(X), where X has distribution
D. Also if Ey and Ej are distributions on Y then ||D; x E1 — Dy X Es|| < ||D1 — Da|| + ||E1 — Es|.

)-sources

A distribution D on {0,1}" is called a é-source if for all z € {0,1}", D(z) < 27°".

D is called a d-source to within e if there exists a §-source D’ such that |D — D'|| < e.

A distribution D on the space {0,1}1 x {0,1}/2 x --- x {0, 1} is called a block-wise d-source if, for
1 <4 <k and for all values z; € {0,1},...,2; € {0,1}!, we have that

Pr(X; = x| X1 = x1,..., Xio1 = x4-1) < 27,

where the vector of random variables X7 ... X} is chosen according to distribution D. A block-wise
d-source is the same as the PRB-source of [CG1] except that here the block length is allowed to vary.

3 Fooling Randomized Space-Bounded Machines

Our goal in this section is to use an extractor to construct a pseudo-random generator for space
bounded computation.

Definition 3 A generator G : {0,1}"™ — {0, 1} is called a pseudo-random generator for space S with
parameter € if, for every randomized space S algorithm A and every input to it,

|Pr[A(y) accepts] — PrlA(G(z)) accepts]| < e

where x,y are chosen uniformly at random from {0,1}",{0,1}™, respectively.

In this definition it is implied that A accesses y or G(z) as though they were the results of random coin
tosses, while also having regular access to its “real” input. We count the space as the total information
needed to store the state of the machine, i.e. the space is the logarithm (base 2) of the total number of
configurations of the machine. For any space bound S(n) > logn, this changes the definition of space
by at most a constant factor.

Our generators will run on-line in space(.S), in the following sense:

Definition 4 A generator G : {0,1}" — {0,1}"™ is said to run on-line in space S if its input and output
tapes are one-way and it runs in space S.

In Section 3.1 we will show how a pseudorandom generator that stretches R bits to RS™ bits for v < 1
can be built using an extractor. Then in Section 3.2 we will show how to compose such generators and
stretch the number of random bits by a factor of S¢ for any constant c.

3.1 Expanding R Bits to RS” Bits

Let 0 < v < 1 be given. We will construct an on-line pseudorandom generator that stretches R bits
to R’ = Q(RSY) bits (for all R > (¢ + 1)S for some constant ¢ described below). Fix the following
parameters:

1. t = 8t7,

2. n is chosen such that the output of the extractor described in Lemma 1 with input sizes n and ¢
and parameter § = 1/2 is of length exactly S. Thus n = ¢S for some constant c¢. Note that we
may also assume ¢ > 4, since we can always make ¢ larger by ignoring some of the bits output by
the extractor.

3. R=(R—n)S", and l = R'/S. Thus R' = Q(RS").

4. e = (e + 2-5), where € is the quality of output of the extractor with input sizes n and t and
parameter § = 1/2. Thus e = 2~ 2(5'7/log5)

Description of G:
1. INPUT: z € {0,1}",y1,...,y € {0, 1}

2. OUTPUT (a string in {0, 1}7): E(z,11),..., E(z,y).

Lemma 2 G is a pseudo-random generator for space S with parameter € running on-line in space
0(9).
Proof: The fact that G runs on-line in space O(S) follows immediately from the fact that E can be
computed in space O(n). To prove that G is a pseudorandom generator we will show that it fools
any space(S) machine M. As in [AKS]|, we model M as a layered multi-graph L with a layer for each
0 < i < I, where each layer has 2° vertices. This will represent M reading S random bits at a time: the
ith layer of L represents the configuration of M after reading ¢ sets of S bits. More formally, L consists
of vertices (i,), and the edge < (,7), (i + 1, k) > appears with the label r iff the S-bit random string
r causes M to go from configuration j to configuration k (so an edge can appear with many labels).
Denote by U; the distribution on layer ¢ induced by M running on a truly random y. Thus U;[j] is
the probability that M will be in state j after reading ¢S random bits. Denote by D; the distribution
on layer ¢ induced by M running on the output of the generator. The lemma now follows from the
following lemma.

Lemma 3 For all 0 <i <1, |U; — D;|| <i(275 +¢€).
Proof: Let X,Y1,...,Y; denote random variables corresponding to the inputs x, y1, ...,y being chosen
independently and uniformly at random.

We prove this lemma by induction on i. It is true for i = 0, since both Dy and Uy are simply
concentrated at the initial configuration of the machine. Suppose it is true for i — 1. Define U/ and D/
to be the distributions on level ¢ conditioned upon the (i—1)st vertex being j (where Uij is for M running
on a truly random input and Df for M running on the output of G). We thus have U; = 3, U ‘_1[j]UZ»j
and Di = Zj Dz_l[j]Di

Let B be the set of j for which D;_1[j] > 2729, For a fixed j € B consider the distribution of X
conditioned upon reaching vertex (i — 1, j) (and induced by the random choices of X and of ¥7...Y;_1).
Since the conditioning can only increase the probability of each value of X by a factor of at most 229,
we get that this distribution is a d-source, for § = (¢ — 2)/c > 1/2. In this case the fact that F is
an extractor implies that the distribution of E(X,Y;) conditioned upon reaching vertex (i — 1,7) is
quasi-random to within ¢’. Since the next vertex (on level i) is determined by E(X,Y;), we get that
this vertex (conditioned on visiting (¢ — 1, 7)) is distributed the same (to within €’) in the random and
pseudorandom cases. In other words, ||Uf - Dg | <¢€.

Since there are at most 2° possible values for j we can bound e Di—1lj] < 292725 = 275 We
can now bound from above ||U; — D;||. Denote Y |ak| by ||e||1 (thus ||U; — D;|| = ||U; — Dil|1/2.) Then,

1U; = Dilli = | Y. Uialf)U7 = 3" D1 [5]1D} |1
j j

IN

1" Ui U7 — Dica G107 |1 + 1Y Dica[5)U7 — Dica[]1D1
J J
< O Uialh) = Dica DN I+ O 1Di—a GIDNTY = DI+ O 1D IDITT — D
J JjEB Jj¢B
< |Uisg = Diqlli-141-2¢ +279 .2,

The lemma follows. O
This also concludes the proof of Lemma, 2. O

3.2 Composing on-line generators
As is the case for poly-time secure pseudorandom generators, on-line generators can be composed.

Lemma 4 Let Gy : {0,1}f%2 — {0,1}* be a generator for space S1 with parameter ¢, running on-line
in space Sa. Let Go : {0,1}% — {0,1}?2 be a generator for space S1 + Sa with parameter es running
on-line is space S3. Then, Gy oGy : {0,1}1% — {0,111 is a pseudorandom generator for space Sy with
parameter €1 + €o running on-line in space So + Ss.

Proof: The proof follows from the fact that for any space S; algorithm A, A(G1(-)) can be implemented
on-line in space S7 + So2. (Recall that, by definition, A treats G1(+) as the outcome of random coin flips
and thus accesses it on-line.))

Our main theorem, from which Theorem 1 is immediate, now follows easily:

Theorem 2 For any constant v > 0 and all polynomials p, there is (an explicitly given) pseudo-random
generator G : {0,1}°5) — {0,1}*5) for space S with parameter 2-S'"" running in time poly(S) and
space O(S).

Proof: Let p(n) = n¢ and choose some v < v. We first build a generator G for space S; = S that
stretches the number of bits by a factor of 7 and runs on-line in space S, as in Section 3.1. We then
build a generator Go for space S + Sy stretching by a further S7 factor. This is repeated (¢ — 1)/~
times and all of the above generators are composed together. This gives a generator that stretches the
random bits by a factor of n°~!. Taking R = O(S) concludes the proof. O

4 A Lower Bound

In this section, we give a lower bound on the quality of any extractor. This means giving a lower
bound on ¢t and an upper bound on m.

Theorem 3 Suppose E : {0,1}"x{0,1} — {0,1}™ is a (3, €)-extractor, where § < 1—1/n and e < 1/2.
Then t > max(loge~! — 1,1og((1 — d)n)) and m < én + 2e.
Proof: First suppose € < 2-¢+1) Pick any S C {0,1}™ with |S| = 2=+ The point is that for
each x, the probability that E(z,y) € S is an integral multiple of 27, and hence will differ from 9~ (t+1)
by at least 2~ (**1) > ¢. Thus let A be the set of z € {0,1}" such that for some y, E(z,y) € S. Then
either A or its complement has size at least 2°™, and therefore violates the definition of extractor.

To see that ¢ > log((1 — d)n), denote by V(x) the 2!-bit long vector obtained by concatenating the
first bit of E(z,y) for all values of y € {0,1}; also for v € {0,1}2" denote A, = {z|V(z) = v}. It is
clear that for any fixed v, if z is uniformly chosen from A, then the first bit of F(z,y) is completely

determined by y, and thus E(z,y) o y is not quasi-random. This implies that |A,| < 2°". As the A,’s
are a partition of {0,1}" we have 2229 > 27 5o ¢ > log((1 — 8)n).

To see the upper bound on m, we note that if D is quasi-random to within e on {0, 1}", then for some
z, D(z) < 27°, where s = r — 2e. Otherwise D would place positive probability on at most 2° strings,
so the variation distance from D to uniform would be 1 — 2577 =1 — 272¢ > ¢,

Applying this to the (m + t)-bit output E(x,y) oy, we see that some string must be output with
probability at most 22¢~™~!. On the other hand, any such string must also have probability at least
2—6n—t. Thus 225—m—t > 2—6n—t.

O

5 Extracting Randomness

In this section we describe the extractor. There are two main parts: “converting” a d-source into a
distribution close to a block-wise §-source, and using hashing techniques to extract bits from a block-wise
d-source. Because this second part is easier, we present it first in Subsection 5.2, just after presenting
our tools in Subsection 5.1. The first part is described in Subsections 5.3 and 5.4, where everything is
put together.

5.1 Tools

5.1.1 k-wise independent distributions

We will need to choose, sufficiently randomly but using few random bits, [elements out of n given
elements. The property we wish to have from the random choice is that, with high probability, it
intersects every given subset of size on in at least §1/2 places. The simplest way to do this is using
k-wise independent distributions (see e.g. [CG2, L, BR, MNN]). In order to ensure that no duplicate
elements are chosen, we do the following.

Choosing [out of n elements:
We divide the n elements into [disjoint sets A1, ..., A; of size m = n/l, i.e.

Ai={GE—-1m+1,6i—1)m+2,...,im}.

We then use klogn random bits to choose X7,..., X; k-wise independently, where the range of X; is
A;, and set S = {X1,..., X;}.
The property we will require is:

01)6, th(in cnose at ra d() as de r ! l

We use the following lemma, which is a special case of Theorem 2.5 from [SSS]:

Lemma 6 Let Yq,...,Y; be k-wise independent 0-1 random variables, ¥ = Zézl Yi, and p = EY. Let
a = /kel/3/u, and suppose o < 1. Then

Pr(lY — u| > ap] < e”F/2,

Proof of Lemma 5: Define the random variables Y; to be 1 iff X; € T, and 0 otherwise. Let
6; = EY; = [TNA;|/m. Thenfor Y =YL, V;, EY = 2!, §; > 61. Setting v = 1/2 (s0 a?e~'/3 > 1/6)
in Lemma 6 concludes the proof. O

In the above lemma we used t = O(klogn) random bits to generate the k-wise independent random
variables Y1,Ys,...,Y,. By using more sophisticated techniques based on random walks on constant
degree expanders, we can reduce the number of random bits to O(k 4 logn) for constant 6. (“Almost
k-wise independent” sample spaces do not appear to give this.) This is done below, but we do not use
it further in this paper.

Lemma 7 Suppose ck < 6%1. Then we can use O(k/§ + logn) random bits to pick | random variables
X1,...,X;in {1,2,...,n} such that

Pr[> 6%1/16 of the X;’s lie in T] > 1 — 27,

Proof: We combine 10-wise independence and random walks on expanders in a manner similar to
[BGG]. We divide {1,2,...,n} into m disjoint sets Aj,..., A, of size p = n/m, where m = 14k/J.
Within each set A;, we use 10logp bits to pick a set S; of size I’ = [/m using 10-wise independence, as
in Lemma 5 (in fact, pairwise independence would suffice, but we wish to quote Lemma 5).

Let T; = T'N A;, and §; = |T;|/p. We say that dimension ¢ is important if 6; > 6/2. There must be
at least dm/2 > Tk important dimensions. Now set the constant ¢ in the statement of the lemma large
enough so that §I’ > 120. By Lemma 5, if ¢ is important then Pr[|S; N T;| > §I'/4] > .99. Call such a
set S; good.

We now use an explicitly constructible constant-degree expander graph G on p'° nodes, with second
largest eigenvalue in absolute value at most 1/10. For example, we can use a power of the one in [GG]
with sufficiently many self loops to eliminate the negative eigenvalues. We then take a random walk for
m steps from a uniformly random start vertex. The vertex visited at the ¢th step defines a set .S; C A;
as above. We set S = U/, S;.

To analyze this, we need the following modification of a lemma from [IZ] (see also [CoW]):

Lemma 8 Suppose that for 1 <i <7k, W; C{1,2,...,N}, |W;| > .99N, and G; is a reqular expander
multi-graph on N nodes with corresponding transition matriz having second largest eigenvalue in absolute
value at most 1/10. Perform a random walk from a random initial start vertex, and then use graphs
G1,...,Gq to take the next Tk steps and visit vertices vy, ...vr.. Then

Pr[>7k/2 of v; € W] > 1 —27F,

Now consider only the first 7k important dimensions. Let G; denote G" (G to the power r;, cor-
responding to a walk on G for r; steps), where r; is the number of dimensions between the (i — 1)st
important dimension and the ith. Then Lemma 8 applies, and

Pr[> ém/4 of S; are good] > 1 —27%.

Note that if there are §m/4 good S;, then |S N T| > §21/16, and the proof is complete.

We remark that we can improve the dependence on § in two ways: first, by using the generator of
[N1] for the bits of the random walk; and second, by redefining i as important if 6; € I; = (2_(1+j), 277],
where j is chosen so that the sum of the §; in this interval is maximum.

Od

5.1.2 Universal Hashing

We will use universal hash functions [CaW]. Formally, let H be a set of functions & : {0,1}" — {0,1}"™.

Definition 5 (Carter-Wegman) H is called a universal family of hash functions if for any x; # x9 €
{0,1}" and y1,y2 € {0,1}™ we have that

Priemlh(z1) = y1 and h(x2) = 2] = 92m,

We will require the Leftover Hash Lemma of [ILL].

Lemma 9 (Leftover Hash Lemma [ILL]) Let X C {0,1}",|X| > 2". Let k > 0, and let H be a universal
family of hash functions mapping n bits to r — 2k bits. Then the distribution (h,h(z)) is quasi-random

within 1/2% (on the set H x{0,1}"=2F), where h is chosen uniformly at random from H, and x uniformly
from X.

The following is a corollary of the proof of the Leftover Hash Lemma.

Corollary 3 Let D be a distribution on {0,1}" such that for all x € {0,1}", D(x) < 27". Let k > 0,
and let H be a universal family of hash functions mapping n bits to r — 2k bits. Then the distribution
(h, h(x)) is quasi-random within 1/2F (on the set H x{0,1}"=2F), where h is chosen uniformly at random
from H, and x according to D.

5.2 Hashing to get quasi-randomness

In this subsection we present a function which extracts a quasi-random string from a block-wise
d-source.
Function C:

The function has 3 parameters: d, the quality of the source; Iy, s, the largest and smallest block sizes.

1. INPUT: 21 € {0, 1} ... 25 € {0,1}; y € {0,1}%s. Here l;_1/l; = (1 +6/4) for 1 <i < s.

2. We assume for each i a fixed universal family of hash functions H; = {h : {0,1}% — {0,1}%4/2}.
Each function in H; is described by 2I; bits.

3. hg —y
4. For i = s downto 1 do h;_1 < h;j o hi(z;)

5. OUTPUT (a vector in {0,1}™): hg, excluding the bits of hs.

Lemma 10 Let D be a block-wise §-source on {0, 1} 1+ +s, IFX=X... X, s chosen according to D
and Y is chosen uniformly at random in {0, 1}215, then the distribution of C(X,Y)oY is quasi-random
to within 2 - 27 0ks/4,

Proof: We will prove by induction from ¢ = s down to ¢ = 0 the following claim, which clearly implies
the lemma.

Claim: For any sequence of values x; ... x;, the distribution of h; conditioned on X; = x1,...,X; = z;,
is quasi-random to within €;, where ¢; = >%_; 2700/4,

This claim is clearly true for ¢ = s. Now suppose it is true for ¢ + 1. Fix the conditioning
X1 = x1,...,X; = x;, and let D;y; denote the induced distribution on X;,;1. Since, by the induc-
tion hypothesis, for every x;11, the induced distribution on h;1; is quasi-random, we have that the
distribution << X;41, hj+1 >> is within €;11 of the distribution D; 1 X U;41, where U;41 is the uniform
distribution on H;1.

Thus, the distribution of h; is within €;11 of the distribution obtained by picking x;;1 according
to Djt+1, and hjy1 independently and uniformly at random in H;1,. Using Corollary 3 this second
distribution is quasi-random to within 279%+1/4, O

The algorithm is more subtle than at first appears. In particular, it is important that the above
algorithm proceeds “backwards,” i.e. that the block-wise §-source outputs the biggest blocks first, but
we start hashing with the smallest blocks first. Otherwise, say the distribution of X, 1 could be an
arbitrary d-source depending on x;. Then since hs_1 also depends on xs_1, hs—1 and x;_1 would not
be close to independent, and we could not apply Corollary 3.

5.3 Extracting a block

Now we show how to convert a d-source into a distribution close to a block-wise §-source. In order to
do this, we must be able to obtain smaller blocks which are close to §-sources. In this section we show
how to obtain one such block.

The idea to do this is as follows. Intuitively, a d-source has many bits which are somewhat random.
We wish to obtain [of these somewhat random bits. This is not straightforward, as we do not know which
of the n bits are somewhat random. We therefore pick the [bits at random using k-wise independence.

The function B:
The function has 4 parameters: n, the size of the original input; [, the size of the output; k, the
amount of independence used; and 9, the quality of randomness needed.

1. INPUT: z € {0,1}"; y € {0,1} (where t = O(klogn)).
2. Use y to choose a set {i1...4;} C {1...n} of size [as described in Section 5.1.1.
3. OUTPUT (a vector in {0,1}!): x;, ... x;, (here z; is the jth bit of z).

Lemma 11 If D is a -source on {0,1}" and X is chosen according to D, then for all but an € fraction
of y € {0,1} the distribution of B(X,%) is within € from a &'-source, where §' = c¢§/logé~! and
€ = max (2=, 2*057) for some sufficiently small positive constant c.

The intuition for this is perhaps best seen by considering a simple proof to a slightly weaker conclusion:
for all but an e fraction of the §’s the distribution of B(X,#) has Q(8l) entropy. The distribution on
X clearly has entropy H (X') of at least dn. Let ¢; be the conditional entropy of X; conditioned on
X1...X;1. From information theory, we know that > 1 ; ¢; = H(X:) > 0n. Again from information
theory we have that the entropy of the output is at least 22:1 ¢i;- All that is needed to complete
the proof is that when {i;...4;} are chosen using k-wise independence, the above sum is, with high
probability, close to its expected value §l.

The rest of this section is devoted to proving the slightly stronger conclusion, that the output is
near a ¢’-source. Our proof tries to retain the structure of the above proof but, since we do not have
the powerful tools of information theory at our disposal, the proof is not very simple. The difficulty is
perhaps best appreciated by observing that it is possible that for all ¢, B (X ,) is not a ¢’-source (for
any 0'), but only statistically close to a ¢§’-source.

Fix a d-source D. We need the following definitions (which are relative to D).

10

Definition 6 For a string & € {0,1}"™ and an index 1 <i <n, let

pi(T) = Prg

teplXi =il X1 =21,..., Xim1 = 3]

Index i is called good in Z if p;(Z) < 1/2 or p;(¥) =1/2 and x; = 0.

The part of the definition with p;(Z) = 1/2 is to ensure that exactly one of x; = 0 and z; = 1 is good,
for a given prefix. This is used in Lemma 14.

Definition 7 Z is a-good if there are at least an indices which are good in x.

Definition 8 For S C {1,2,...,n}, T is a-good in S if there are at least «|S| indices in S which are
good in Z.

Definition 9 S is a-informative to within 8 if

PrXeD[X isa — goodin S] > 1 — (3.

Denote by S, the set of [indices chosen using the random bits ¢ in the manner described in Section
5.1.1. We will prove two lemmas which together clearly imply Lemma 11. We postpone the proof of
the first of these until the next subsection.

Lemma 12
Prs[Sy is 0’ — informative to within €] > 1 —e.

Lemma 13 Fiz a set of indices S = {iy ...4;} that is & -informative to within €. Then, the distribution
of Xi, ... X, induced by choosing X according to D is e-near a ¢'-source.

Proof: We give the following simplified proof due to Leonard Schulman, which appeared in [Z2]. Fix
any string w;, ...x;. Let

atj = Pr[Xy =z, Ao+ AN X, = x;; Aexactly t of the indices i1,...,4; are good].

Claim: Y, a; ;2" <1 for all j, 0 < j <[. This implies > ;55 ar; < 279l Thus the contribution to the
probability of any string z;, ...xz;, from z’s which are §’-good in S is at most 279l Since this accounts
for 1 — e of the total probability, this will prove the lemma.

Proof of Claim: By induction on j. The base case of j = 0 is easy. Assume known for j; we prove for
J + 1. Consider any prefix r up to position i;41 — 1 which so far agrees with z;, ... x;;. It has the form
T = WTH WaTip W3 - - WL Wig 1 where the w’s are strings.

Note that a particular prefix contributes to exactly one ay j; this contribution is the probability that
this prefix occurs. Suppose r has ¢t good indices among i1,...,%;. If 7;41 is not a good index, then the
contribution of r o Ti;,, 10 atj+1 s abt most the contribution of r to a; ;. If ij41 is a good index, then
by the definition of good index, the contribution of r o Ti;,, t0 ap41 541 is at most half the contribution
of r to ayj. In either case, >, az j+12" <Y, a0 ;2 < 1.

O

11

5.3.1 Proof of Lemma 12

We first need the following lemma showing that most #’s have many good indices.

Lemma 14
Prz.plX isnot a — good] < 9-con,

where a = ¢16/log 6~ for some absolute positive constant c;.

Proof: Let us count the number of z’s that are not a-good. There is a natural 1-1 correspondence
between sequences in {good, bad}™ and strings &; namely one in which ¢ is bad in & whenever the ith
element of the sequence is “bad”. Thus, the number of x’s that are not a-good is at most the number of
n-bit strings with less than an “good” locations, i.e. 21[281—1 (7;) Since D is a §-source, the probability
of each string is at most 27°", so

lan]
PTXGD[X is not a — good] < 9—on E (n) < g—adn
. 7
=0

for ¢; small enough. O

Proof of Lemma 12: Denote ¥ = min(k, 61/6). For any fixed a-good string #, we can apply Lemma
5 to the set of good indices and obtain

Pry [has al/2 good indices in Sy] > 1 — 4e~*'/2.
Using Lemma 14 it follows that

P’I“X'7Y[X has ol /2 good indices in Sy] > 1 — 4e~*'/2 — g=c10n

Set & = /2 and € = \/4e=*/2 4 2—c19n We will now use Markov’s inequality in the following way.

Let A, = PrieD[)_f is not &' — good in Sy|. Thus Ay is a random variable determined by Y. From the

above analysis, Ey[Ay] < 2. Therefore, by Markov, Pry[Ay > €] < e. In other words,

Pry[Sy is &' — informative to within €] > 1 — e.

5.4 Description of the extractor

The only thing left to explain is how extracting small slightly random blocks can be used to obtain
a distribution close to a block-wise d-source. We do this after describing the extractor more precisely.

Unfortunately, the extractor requires a large number of parameters. How they are chosen is summa-
rized below. The reader is advised to skip to the extractor description, and only use this parameter list
as a reference.

Parameters:
1. The parameters n, € and § are given. We assume 1/n <0 < 1/2 and 27 < ¢ < 1/n.

2. &' =c(6/2)/10g(2/6), where c is from Lemma 11. Thus 6’ = ©(5/logé~1).

12

3. lo is the largest integer such that > 7°; W < dn/4. This is used in Lemma 15. Thus
lo = Q(6%n/log 571).

4. For each 4, set l; = l;_1/(1 + ¢'/4). This is needed to define the function C.
5. k is chosen so that 2% = (¢/8n)2, where c is from Lemma 11. Thus & = O(loge™1).

6. s is chosen to be the largest integer such that Iy > k/¢§’. This is needed to apply Lemma 11.
(This also implies 279! < ¢/4, as needed to apply Lemma 10 in the proof of Lemma 1.) Thus
ls = O(logetlogd71/§), and s = O(lognlog d—1/6).

7. t1 = klogn. Thus t; = O(loge ! logn).
8. ty = 2ls. Thus ty = O(loge *logd—1/6).
9. The length of the second parameter to F is given by t = st;+to. Thust = O(loge ! log®nlogd~1/6).
10. The length of the output of E is given by m = 2l — 2l,. Thus m = Q(5%n/logé1).
Description of E:
1. INPUT: z € {0,1}"; y1 € {0, 1}, ... ys € {0,1}!1; yo € {0, 1}t2.
2. Fori=1...sdo z; — B(x,y;). (We use B with parameters n,l;, k,0/2.)
3. OUTPUT (a vector in {0,1}™): C(z1...z2s,y0). (We use C with the parameters ¢',1,ls.)

The following lemma tells us that the distribution of the z;’s is close to a block-wise d-source.

Lemma 15 For all but €/4 fraction of possible values of y1 . . .ys, the distribution of Zy0---0Z, induced
by choosing X according to distribution D is within €/4 of a block-wise §'-source.

Before we prove this lemma let us see how it implies the main lemma.
Main lemma (Lemma 1): For any d-source D the distribution of E(X,Y) oY induced by choosing
X according to D and Y uniformly in {0, 1}! is e-quasi-random on {0, 1} x {0, 1}*.
Proof: By Lemma 15 for all but €/4 fraction of values of y; ...ys the distribution on the z’s is within
/4 of a block-wise §’-source. For each such value of the y’s, by Lemma 10, the output concatenated
with yo is quasi-random within €/2 + €/4. Add the €/4 “bad” y’s and the lemma follows. O

We now return to the proof of Lemma 15.

Proof of Lemma 15: Let us first give the intuition. Lemma 11 tells us how to extract one slightly-
random block from a §-source. When we extract the second (or sth) block, however, we must ensure
that it is still slightly random conditional on the first block. The reason the last blocks are slightly
random is that we are conditioning on at most Iy +1l2 + ...+ ls_1 < dn/4 bits of information, so we are
still left with a 39 /4-source, and with high probability a d/2-source. We now formalize this.

Call a vector yj . ..y; good if the distribution of Z; ... Z; is within ie/(4n) from a block-wise §’-source.
We now prove by induction on ¢ that all but a ie/(4n) fraction of y;...y; are good. As s < n, this
suffices to prove the lemma.

Fix a vector y; ...y;—1 that is good. We will show that for all but €¢/(4n) fraction of y;’s, the vector
Y1 ...y; is also good. We call the vector of values z1, ..., 2,1 tiny if

PriZi=ziand -+ and Z;—1 = z;—1] < 9—0n/2

13

Since there are at most 2i1H-+i-1 < 20n/4 possible values for zy...z_1, Pr[Zy...Z;_y is tiny] <
270/% < ¢/(16n).

For any zj ...z;—1 consider the distribution D,, , , defined to be the distribution on X conditioned
onZy=z...Zi—1 = zi—1. It is clear that if z; ... z;_1 is not tiny then for all x € {0,1}": D,, .. ,(x) <
2_5"/2D(x), and thus D, ., , is a 0/2-source. Let Ey, ., ., , denote the distribution of Z; induced
by choosing X according to D, ., ,. Applying Lemma 11 to D,, ., ,, we conclude that for every
non-tiny choice of z1...z;_1 for all but an (e¢/8n)? fraction of y;’s, Ey, .2, is within (¢/8n)? of a
d’-source.

Applying Markov’s inequality in a way analogous to that in Lemma 12, we conclude that for all but
at most an €/(4n) fraction of y;’s,

€

Pry .z [Ey, 2.2, 1s not within (%)2 of a ¢’-source]

€/(16n) + Pr[z1 ... z;—1 is tiny]

We conclude the induction step by observing that the above inequality implies that y; ... y; is good.
To get a block-wise §’-source that is close to the distribution of Z; ... Z;, we start with the block-wise
source that is close to the distribution of Z; ... Z;_1 (given by the induction hypothesis), and “extend it”
by choosing a &'-source on Z; for each value of 2 ...2,—1. If Ey, ., ., is within (¢/8n)? of a §'-source,
we choose the close §’-source. All the other possible values of z; ...z;_1 occur with low probability, so
we can use e.g. the uniform distribution. The total error is: (i — 1)e/(4n) for the original block-wise
source, (€/8n)? on the “good” z’s and €/(8n) for the “bad” z’s, all together less than ie/(4n). 0

6 Acknowledgements

We thank Mauricio Karchmer, Nati Linial, Mike Luby, Muli Safra, and Avi Wigderson for helpful
discussions. We also thank the anonymous referees for a careful reading and helpful comments.

References

[AKS] M. Ajtai, J. Komlos, and E. Szemeredi, Deterministic Simulation in Logspace, Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 132-140.

[BNS] L. Babai, N. Nisan, and M. Szegedy, Multiparty Protocols, Pseudorandom Generators for
Logspace, and Time-Space Tradeoffs, J. Comp. Syst. and Sci. 45(2) (1992), pp. 204-232.

[BGG] M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in Interactive Proofs, Computational
Complezity 5 (1993): 319-354.

[BR] B. Berger and J. Rompel, Simulating (log®n)-Wise Independence in NC, JACM 38(4):1026-
1046, 1991.

[CaW] L. Carter and M. Wegman, Universal Hash Functions, J. Comp. and Syst. Sci., 18(2) (1979):
143-154.

[CG1] B. Chor and O. Goldreich, Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity, SIAM J. Comput., 17(2) (1988):230-261.

14

[CG2]

[CoW]

(GG

[ILL]

[1Z]

[JS]

[MNN]

[N1]

[N2]

SSS)

(W7

[Z1]

[22]

B. Chor and O. Goldreich, On the Power of Two-Point Based Sampling, Journal of Complexity
5 (1989):96-106.

A. Cohen and A. Wigderson, Dispersers, Deterministic Amplification, and Weak Random
Sources, Proceedings of the 30th Symposium on Foundations of Computer Science, 1989, pp.
14-19.

O. Gabber and Z. Galil, Explicit Construction of Linear-Sized Superconcentrators, J. Comp.
and Sys. Sci 22 (1981), pp. 407-420.

R. Impagliazzo, L. Levin, and M. Luby, Pseudo-Random Generation from One-Way Functions,
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 12-24.

R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proceedings of the 30th
Symposium on Foundations of Computer Science, 1989, pp. 248-253.

M. Jerrum and A. Sinclair, Approximating the Permanent, SIAM J. Comput. 18 (1989):1149-
1178.

M. Luby, Removing Randomness in Parallel Computation Without a Processor Penalty, Pro-
ceedings of the 29th Symposium on Foundations of Computer Science, 1988, pp. 162-173.

R. Motwani, J. Naor, and M. Naor, The Probabilistic Method Yields Deterministic Parallel
Algorithms, Proceedings of the 30th Symposium on Foundations of Computer Science, 1989, pp.
8-13.

N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica 12(4)
(1992), pp. 449-461.

N. Nisan, RL C SC, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
1992, pp. 619-623.

W.J. Savitch, Relationships between nondeterministic and deterministic space complexities, J.
Comp. and Syst. Sci. 4(2) (1970):177-192.

J.P. Schmidt, A. Siegel, A. Srinivasan, Chernoff-Hoeffding Bounds for Applications with Limited
Independence, Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
1993, pp. 331-340.

A. Wigderson and D. Zuckerman, Expanders that Beat the Eigenvalue Bound: Explicit Con-
struction and Applications, Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, 1993, pp. 245-251. Revised version appears as Technical Report TR-95-21, Depart-
ment of Computer Sciences, The University of Texas at Austin, June 1995.

D. Zuckerman, General Weak Random Sources, Proceedings of the 31st Symposium on Founda-
tions of Computer Science, 1990, pp. 534-543.

D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica, 16:367—
391, 1996.

15

