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Abstract

We show how to simulate BPP and approximation algorithms in polynomial time using the
output from a δ-source. A δ-source is a weak random source that is asked only once for R bits,
and must output an R-bit string according to some distribution that places probability no more
than 2−δR on any particular string. We also give an application to the unapproximability of
MAX CLIQUE.

1 Introduction

Randomness plays a vital role in almost all areas of computer science, both in theory and in practice.
Randomized algorithms are often faster or simpler than the deterministic algorithms for the same
problem (see e.g. [Rab]).

To produce “random” bits, a computer might consult a physical source of randomness, such as
a Zener diode, or use the last digits of a real time clock. In either case, it is not clear how random
these “random” bits will be. Moreover, it is impossible to verify the quality of a random source. It
is therefore of interest to see if weak, or imperfect, sources of randomness can be used in randomized
algorithms. Indeed, the fewer assumptions we make about the quality of our random source, the
greater the chances are that the source satisfies these assumptions and hence that our randomized
algorithms work correctly. This emphasis on reliability seems even more important as computers
become faster, because users should be willing to pay a greater price for greater accuracy. This ties
in with the recent interest in checking.

The history of weak random sources reflects this ideal of using as weak a source as possible.
As far back as 1951, von Neumann [vN] gave a simple and practical algorithm to extract perfectly
random bits from a source of independent coin flips of equal but unknown bias. Elias [Eli] improved
this by showing how to extract bits at the optimal rate.
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The problem of correlations, however, is more serious. Blum [Blu] was the first to tackle this
by modeling a weak source as a Markov chain. He showed that a counter-intuitive generalization
of von Neumann’s algorithm converts the output from such a source into a truly random string.

Yet the requirement that a source be Markovian is very stringent, requiring the source to be
very regular. This motivated Santha and Vazirani [SV] to ask: what if we only know that each
bit that the source outputs is somewhat random? To answer this, they introduced the model of
semi-random sources:

Definition 1 [SV] A semi-random source with parameter δ outputs bits X1X2 . . . XR, such that
for all i ≤ R and for all x1, . . . , xi ∈ {0, 1},

δ ≤ Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1− δ.

They proved that it is impossible to extract even a single almost-random bit from one such
source (so Vazirani [Va2, Va3] showed how to extract almost-random bits from two independent
sources).

In light of this result, one might give up hope for simulating randomized algorithms with one
semi-random source. Nevertheless, [VV] and [Va1] showed how to simulate RP and BPP with one
semi-random source.

Chor and Goldreich [CG1] generalized this model by assuming no sequence of l bits has too
high a probability of being output. More precisely, 1

Definition 2 [CG1] An (l, δ) PRB-source outputs R bits as R/l blocks Y1, . . . , YR/l, each of length l,
such that for all l-bit strings y1, . . . , yR/l,

Pr[Yi = yi|Y1 = y1, . . . , Yi−1 = yi−1] ≤ 2−δl.

Note also that we do not know anything about the source except the restriction above; our
simulations must work for all such sources. Equivalently, we may assume an adversary controls the
output blocks, and need only abide by the restriction above.

A semi-random source corresponds to l = 1. For l = O(logR), Chor and Goldreich showed how
to simulate BPP using one such source.

Various authors have also considered models for weak sources where an adversary chooses the
values of certain bits, but the others are random (see [CG+], [BL], [LLS], [CWi]).

Given all of this previous work, it is natural to ask: what is the most general model of a weak
source for which we can simulate randomized algorithms? Do we need the randomness in some
particular form, or will any form suffice?

Of course, if BPP = P, then we don’t need randomness at all. Yet we follow [VV], [Va1], and
[CG1] and deal with a more abstract “BPP” problem: let an adversary label strings in {0, 1}r either
“yes” or “no,” provided that at least 3/4 of the strings have the same label. We wish to find out
whether the majority say “yes” or “no,” with high probability. It is clear that randomness really
is needed to answer this question quickly.

One’s first guess at the most general source would probably be to impose a lower bound on
the entropy. For example, if the source outputs R bits, we might insist that the entropy of the
distribution on output strings be at least δR, for some constant δ. If we did this, however, the

1We modify their definition into an equivalent form in order to correspond better with the rest of this paper.
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source could output a useless string with constant probability, and we could never achieve a small
error probability for our randomized algorithms.

Instead, following [Zu1], we propose upper bounding the probability that any particular string
is output:

Definition 3 For any number R of random bits requested, a δ-source outputs an R-bit string such
that no string has probability more than 2−δR of being output, for some fixed δ > 0.
Again, we know nothing else about the source; our simulations must work for all such sources.

It is also important to note that if, say, we make two requests of 100 bits, we do not impose the
2−100δ upper bound on each group of 100 bits. Indeed, it is easy to imagine a source outputting
good bits at the beginning but later outputting highly correlated bits. We therefore impose the
2−200δ upper bound on the total 200-bit string. Equivalently, we assume that only one request for
random bits is made to the δ-source.

This model essentially generalizes all of the above models,2 making no structural assumptions
about dependencies. The generality of our model is further substantiated by a lemma of Cohen and
Wigderson [CWi]: an algorithm that simulates RP or BPP using a δ-source also outputs the correct
answer with constant probability using R bits from any source whose entropy is Ω(R), which as
remarked earlier is best possible. As Cohen and Wigderson point out, the largest upper bound one
could impose in the definition above and still possibly get polynomial-time (abstract) RP or BPP
simulations is 2−R

ε
for an arbitrary constant ε > 0.

The first results about these sources were obtained by Cohen and Wigderson [CWi], who showed
how to simulate RP using a string from a δ-source for δ > 1/2, and BPP for δ > 3/4. Yet breaking
the δ = 1/2 barrier appeared difficult, because it involves doing more than can be done by bounding
the second eigenvalue of ordinary graphs (see [WZ]).

Friedman and Wigderson [FW] showed how to break the barrier and improve this to all δ > 0 in
the RP case if one could construct hypergraphs with small second eigenvalue; yet, constructing such
hypergraphs appears difficult. Then, using different techniques, the author showed how to simulate
RP using a δ-source for all δ > 0 in time nO(logn), or in polynomial time under the Generalized
Paley Graph Conjecture [Zu1]. Actually, Sahay and Sudan [SS] pointed out a mistake in that
paper, which we correct in this paper.

In our main results, we show how to simulate RP and BPP in polynomial time using a δ-source
without any unproven assumptions. These algorithms also yield solutions to more general problems.
Our RP simulation implies that we can find an n-bit prime using a δ-source. Our BPP simulation
yields simulations for approximation algorithms, e.g. those used to approximate the volume of a
convex body [DFK], or a statistical simulation to estimate some quantity or set of quantities.

We include separate algorithms for RP and BPP, because the RP algorithm has the advantage
of using few random bits from the δ-source. Namely, if r truly random bits are used by an RP
algorithm to achieve probability of success 1/2, then O(r log r) bits from a δ-source are used by our
RP simulation. Hence this is also a quasi-perfect pseudo-random generator (see [San], [Sip]). Our

BPP algorithm requires rO((log2 δ−1)/δ) bits.
Subsequent to this work, Noam Nisan and the author have extended and simplified the con-

struction, building an “extractor” [NZ], although the construction there does not imply our result.
However, the ideas there do help simplify our original construction, so we present the simplified
construction here.

2One of the bit-fixing sources in [CWi] has a weaker entropy bound than that which we impose. Our model can
be modified to generalize this source, too, but then our simulations would fail.
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The simulations of RP and BPP are equivalent to the explicit construction of a certain type
of expander graph, called a disperser (see [San], [Sip], [CWi]). It is easy to show that random
graphs are dispersers, yet one cannot even use the eigenvalue techniques in [Tan] and [AM] to give
a certificate that a random graph is a disperser (see [WZ] for more discussion on this point). This
makes it especially interesting that our explicit construction works in time just polylogarithmic in
the size of the graph.

It should not be surprising that our disperser constructions are useful in other areas. Here we
give an application to showing the difficulty of approximating the size of the maximum clique. In the
preliminary version [Zu2], we also gave an application to the problem of implicit O(1) probe search.
This is not included here because the author can use new dispersers to simplify and strengthen
these results. The interested reader should see upcoming work by the author [Zu4].

Computing ω = ω(G), the size of the maximum clique of the input graph G, is well known
to be NP-complete [Kar]. Little was known about the difficulty of approximating ω until Feige,
et.al. [FG+] showed that if approximating ω to within a factor of 2(logn)1−ε for some ε > 0 is in P̃ ,
then NP̃ = P̃ (P̃ denotes quasi-polynomial time, i.e. TIME(2polylog(n))). After the preliminary
version of this paper appeared, the above hardness results have been improved: if approximating
ω to within a factor of n1/4−o(1) is in P̃ , then NP̃ = coRP̃ [BS, AL+, AS].

Since it is infeasible to find close approximations, one can ask whether it is feasible to at
least estimate the order of magnitude of ω. More precisely, is there an algorithm that for some
constant t outputs a number between ω1/t and ωt? This is equivalent to approximating logω to
within a constant factor. By applying our disperser construction to the proof of [FG+], we show
that the existence of such an algorithm implies NP̃ = P̃ . The author has recently shown that the
existence of an efficient algorithm to approximate any iterated logarithm of ω to within a constant
factor implies that NP is recognized by slightly-superpolynomial randomized machines (see [Zu3]
for the precise statement).

The extension of our results in [NZ] have had applications to showing that a randomized
SPACE(S) machine using poly(S) random bits can be simulated deterministically in SPACE(S)
[NZ], and to constructing expander graphs that beat the eigenvalue bound [WZ]. The lemma about
expander graphs used in the RP construction has been used to explicitly construct a hitting set for
high-dimensional rectangles [LLSZ].

Our results have recently been extended by Srinivasan and the author [SZ] to the case of
subconstant δ. In particular, they considered δ-sources outputting R bits such that any string has
probability at most 2−R

ε
. For any fixed ε > 0, they gave an nO(logn) simulation of RP using the

output from such a source. If ε > 1− 1/(k + 1) for a positive integer k, they gave nO(log(k) n) time
simulations of BPP (log(k) is the logarithm iterated k times). Even more recently, the above results
for RP have been improved by Saks, Srinivasan, and Zhou [SSZ]. For any fixed ε > 0, they give a
polynomial-time simulation of RP.

Our construction has two basic parts: a simulation using a (particular) block-wise δ-source
(given in Section 3), and a reduction to simulating from such a block-wise δ-source (given in
Section 4 for BPP and Section 5 for RP). We give preliminary definitions and observations about
δ-sources in Section 2, and the application to the unapproximability of MAX CLIQUE in Section 6.

2 Preliminaries

Throughout this paper, we use the convention that capital letters denote random variables, sets,
distributions, and probability spaces; other variables will be in small letters. We often use a
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correspondence where the small letter denotes an instantiation of the capital letter, e.g. ~x might be
a particular input and ~X the random variable being uniformly distributed over all inputs.

For ease of reading, we also ignore round-off errors, assuming when needed that a number is an
integer. It is not hard to see that these assumptions do not affect the validity of our arguments.

All logarithms are meant to the base 2.

2.1 Basic Definitions

Definition 4 RP is the set of languages L ⊆ {0, 1}∗ such that there is a deterministic polynomial-
time Turing machine ML(a, x) for which

a ∈ L⇒ Pr[ML(a, x) accepts] ≥ 1/2 (1)

a 6∈ L⇒ Pr[ML(a, x) accepts] = 0

where the probabilities are for an x picked uniformly in {0, 1}p(|a|) for some polynomial p.

Definition 5 BPP is the set of languages L ⊆ {0, 1}∗ such that there is a deterministic polynomial-
time Turing machine ML(a, x) for which

a ∈ L⇒ Pr[ML(a, x) accepts] ≥ 2/3 (2)

a 6∈ L⇒ Pr[ML(a, x) accepts] ≤ 1/3 (3)

where the probabilities are for an x picked uniformly in {0, 1}p(|a|) for some polynomial p.
As is well known, by running ML on independent random tapes, we can change the probabilities

in (1), (2), and (3) to 1− 2−poly(|a|), 1− 2−poly(|a|), and 2−poly(|a|), respectively.

Distance between Distributions
Let D1 and D2 be two distributions on the same space X. The variation distance between them

is

‖D1 −D2‖ = max
Y⊆X

|D1(Y )−D2(Y )| = 1

2

∑
x∈X
|D1(x)−D2(x)|.

A distribution D on X is called ε-quasi-random (on X) if the distance between D and the
uniform distribution on X is at most ε.

A convenient fact to remember is that distance between distributions cannot be created out
of nowhere. In particular if f : X → Y is any function and D1, D2 are distributions on X then
‖f(D1)−f(D2)‖ ≤ ‖D1−D2‖. Also if E1 and E2 are distributions on Y then ‖D1×E1−D2×E2‖ ≤
‖D1 −D2‖+ ‖E1 − E2‖.

δ-sources
A distribution D on {0, 1}n is called a δ-source if for all x ∈ {0, 1}n, D(x) ≤ 2−δn.
D is called a δ-source to within ε if there exists a δ-source D′ such that ‖D −D′‖ ≤ ε.
A distribution D on the space {0, 1}l1 × {0, 1}l2 × · · · × {0, 1}lk is called a block-wise δ-source

if for 1 ≤ i ≤ k, and for all values x1 ∈ {0, 1}l1 , . . . , xi ∈ {0, 1}li , we have that

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 2−δli ,

where the vector of random variables X1 . . . Xk is chosen according to distribution D. A block-wise
δ-source is the same as the PRB-source of [CG1] except that here the block length is allowed to
vary.
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2.2 Simulations using δ-sources

The first way one would try to simulate randomized algorithms using a δ-source would be to do
what von Neumann did with his sources: convert the “bad” random bits output by the δ-source into
“good” random bits. This has been shown impossible for weaker models, such as the semi-random
sources of [SV], but in our case the proof is particularly simple:

Lemma 1 For any δ < 1−1/n, it is impossible to extract a bit from n bits of a δ-source that takes
on both values 0 and 1 with non-zero probability.

Proof. Suppose we had a deterministic function f : {0, 1}n → {0, 1} that claimed to do the above.
Suppose without loss of generality that f takes on the value 0 at least as often as the value 1. Then
any source with δ < 1 − 1/n could output only values in f−1(0), contradicting the claim about f
extracting a non-trivial bit. 2

Thus we must resort to other methods. To define what simulating RP means, say we wish to
test whether a given element a is in L. If a 6∈ L, then all random strings cause ML to reject, so there
is nothing to do. Suppose a ∈ L; then we wish to find with high probability a witness to this fact.
Let W be the set of witnesses, i.e. W = {x|ML(a, x) accepts}, and N be the set of non-witnesses,
i.e. the complement of W .

One might think that to simulate RP using a δ-source we would need a different algorithm
for each language in RP. Instead, we exhibit one simulation that works for all W ⊆ {0, 1}r with
|W | ≥ 2r−1. In particular, we don’t make use of the fact that W can be recognized in polynomial
time.

Definition 6 An algorithm simulates RP using a δ-source if it takes as input R = poly(r) bits
from the δ-source and outputs a polynomial number of r-bit strings zi, such that for all W ⊂
{0, 1}r, |W | ≥ 2r−1, Pr[(∃i)zi ∈W ] = 1− 2−Ω(R).

Our first theorem is a polynomial-time simulation of RP using a δ-source:

Theorem 1 There is an algorithm that, given any δ > 0, takes time rO((log δ−1)/δ2) to simulate RP
using R = O((r log r)/δ2) bits from a δ-source.

As one might expect, the following lemma illustrates that such a universal algorithm can be
used for other purposes.

Lemma 2 If there is a polynomial-time algorithm A simulating RP using a δ-source, then there
is a polynomial-time algorithm that uses a δ-source and outputs an n-bit prime with probability
1− 2−Ω(n).

Proof. The difficulty will be that we need random bits both to pick the prime and to run the
primality test. First we concentrate on picking the prime.

By the Prime Number Theorem, the fraction of odd n-bit numbers that are prime is at least
1/n. Thus, the probability that an n-tuple of odd n-bit numbers chosen uniformly at random
contains an n-bit prime is at least 1/2. We represent such an n-tuple using n(n − 2) bits (the
first and last bits of an odd n-bit number are always 1.) Let R = n(n − 2), and feed A an R-bit
string from a δ-source such that A outputs polynomially many n(n − 2)-bit strings zi. Then the
probability that at least one n-tuple among the zi contains a prime is 1− 2−Ω(R).

In order to run the primality tests we use the same strings zi. We use only the simpler co-RP
algorithms for primality (see e.g. [Rab]). These algorithms require O(n) random bits, but let us
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use n(n− 2) random bits. We claim that with high probability, each composite n-bit number will
have some zi as a witness to its compositeness. This is because

Pr[∃n-bit composite with no witness among zi]

< 2nPr[given n-bit composite has no witness among zi]

≤ 2n2−Ω(R)

= 2−Ω(R)

Thus it suffices to use the strings zj as random bits when testing the n-bit numbers in zi for
primality. 2

For BPP, we have no “witnesses” to membership, but by an abuse of notation we use W to
denote the set of random strings producing the right answer, and N as the complement of W . As
before, a simulation of BPP will produce strings zi and use these to query whether a ∈ L. The
simulation does not have to take the majority of these answers as its answer, but since we do so it
makes it simpler to define it that way.

Definition 7 A polynomial-time algorithm simulates BPP using a δ-source if it takes as input
R = poly(r) bits from the δ-source and outputs a polynomial number of r-bit strings zi, such that
for all W ⊂ {0, 1}r, |W | ≥ 2

32r, Pr[majority of zi’s lie in W ] = 1− 2−Ω(R).
We can now state our main theorem:

Theorem 2 There is an algorithm that, given any δ > 0, takes time rO((log2 δ−1)/δ) to simulate
BPP using R = rO((log2 δ−1)/δ) bits from a δ-source.

Note that such an algorithm can be used to simulate approximation algorithms. This is because
whenever a majority of numbers lie in a given range, their median also lies in that range. Thus,
by taking medians instead of majorities, a good approximation can be obtained with probability
1− 2−Ω(R).

2.3 δ-sources and Dispersers

To give some intuition about δ-sources, we follow [CG1] and define flat δ-sources and show that we
may assume without loss of generality that our δ-source is flat. We never need this explicitly, but
it is useful to keep in mind.

Definition 8 A flat δ-source is a source which places probability 2−δR on 2δR R-bit strings.

Lemma 3 Suppose an algorithm simulates RP (BPP) using a flat δ-source. Then it also simulates
RP (BPP) using a δ-source.

Proof. The proof in our case is much simpler than in [CG1]. Fix an algorithm A. On certain
input strings, A outputs the correct answer, and on others it doesn’t. The δ-source may as well
place as much probability as possible on the strings for which A is incorrect, i.e. the δ-source may
as well be a flat δ-source. 2

Remark: This observation that some strings are good for A and others aren’t implies that the error
probability 1−2−Ω(R) in Definitions 6 and 7 are not important: we can make the error exponentially
small simply by using a slightly higher quality source. More precisely, define simulations for RP
(BPP) “with non-zero success probability” the same as simulations for RP (BPP) but with the
success probability 1 − 2−Ω(R) replaced by an arbitrarily small but positive probability. Then an
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algorithm simulates RP (BPP) using a δ-source if and only if it simulates RP (BPP) with non-zero
probability from a δ′-source, for some δ′ < δ. This is because if an algorithm simulates RP (BPP)
with non-zero probability from a δ′-source, then there are at most 2δ

′R−1 strings giving the wrong
answer. Thus, the probability of error when the output is from a δ-source is at most (2δ

′R−1)/2δR.
The other direction is similar.

Simulations using a δ-source are equivalent to the construction of a certain type of expander
graph, called a disperser (see [San, Sip, CWi]). We never use this graph-theoretic approach; how-
ever, it is useful to understand the equivalence, as it was used in e.g. [WZ]. Here we rephrase our
results in terms of dispersers.

First, we define dispersers:

Definition 9 An (m,n, d, a, b)-disperser is a bipartite graph with m nodes on the left side, each
with degree d, and n nodes on the right side, such that every subset of a nodes on the left side is
connected to at least b nodes on the right.

Definition 10 An (m,n, d, a, b)-majority disperser is a bipartite graph with m nodes on the left
side, each with degree d, and n nodes on the right side, such that for any subset S of less than b
nodes on the right, the number of vertices on the left side having a majority of neighbors in S is
less than a.

Note that a majority disperser is a disperser.

Definition 11 An (m,n, d, a, b)-disperser or majority disperser is efficiently constructible if, for a
given node on the left, its neighbors can be determined in time polynomial in d.

Lemma 4 (CWi) RP (BPP) can be simulated using R = poly(r) bits from a δ′-source for all
δ′ > δ iff a (2R, 2r, poly(r), 2δR, 2r−1)-disperser ((2R, 2r, poly(r), 2δR, 2r−2)-majority disperser) is
efficiently constructible.

Hence we can restate our results:

Theorem 3 For any δ > 0, a (2R, 2r, rO((log δ−1)/δ2), 2δR, 2r−1)-disperser is efficiently constructible,
where R = O((r log r)/δ2).

Theorem 4 For any δ > 0, a (2R, 2r, rO((log2 δ−1)/δ)r42O((log6 δ−1)/δ3), 2δR, 2r−2)-majority disperser

is efficiently constructible, where R = rO((log2 δ−1)/δ).

2.4 Extractors

Our BPP simulations are even stronger than stated so far. We actually construct an extractor [NZ].
To understand an extractor, recall that we showed earlier that it is impossible to extract a stream
of quasi-random bits from a δ-source. An extractor enables us to extract many quasi-random bits,
if we add a small number of truly random bits (think of t� m < n in the following definition):

Definition 12 [NZ] E : {0, 1}n × {0, 1}t → {0, 1}m is called a (δ, ε)-extractor if for any δ-source
D on {0, 1}n, the distribution of E(x, y) ◦ y induced by choosing x according to D and y uniformly
in {0, 1}t is quasi-random (on {0, 1}m × {0, 1}t) to within ε.

It is not difficult to see how an extractor construction yields a BPP simulation:
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Lemma 5 Suppose that for all δ > 0 there is a polynomial-time (δ, ε)-extractor, with ε < 1/3,
t = O(log n), and m = nΩ(1). Then for all δ > 0 there is a polynomial-time simulation of BPP
using a δ-source.

Proof. Let δ > 0 be given. By using independent random strings, we may assume without loss of
generality that the “witness” set W ⊆ {0, 1}r has size |W | = (1−η)2r for some η ≤ 1/15. Choose n
a large enough polynomial in r so that m ≥ r. The simulator simply requests R = n bits from the
source S, and outputs the first r bits of E(x, yi) for all t-bit strings yi, where x is the string from S.
This amounts to 2t = poly(n) strings zi. For a random x output by S, the expected fraction of zi
that lie outside W is at most η+ ε ≤ 2/5. By Markov’s inequality, the probability that this fraction
exceeds .45 is at most .4/.45 < 1. Thus the simulator produces the correct answer with non-zero
probability. By the remark in Subsection 2.3, this yields a simulator for BPP using a δ′-source for
any δ′ > δ. 2

Therefore, instead of directly building a simulator for BPP, we build an extractor. (Our original
construction was not an extractor, but using the simplifications in [NZ] we convert our construction
to an extractor.) The following theorem immediately implies Theorem 2.

Theorem 5 For any parameters δ = δ(n) and ε = ε(n) with 1/n ≤ δ ≤ 1/2, there exists an
easily computable (and explicitly given) (δ, ε)-extractor E : {0, 1}n × {0, 1}t → {0, 1}m, where

t = 4 log n+O((log6 δ−1)/(δ3ε2)) and m = nΩ(δ/ log2 δ−1).
Note that for constant δ and ε, our construction uses fewer truly random bits than the con-

struction in [NZ], although it outputs fewer quasi-random bits:

Theorem 6 [NZ] For any parameters δ = δ(n) and ε = ε(n) with 1/n ≤ δ ≤ 1/2 and 2−δn ≤ ε ≤
1/n, there exists an easily computable (and explicitly given) (δ, ε)-extractor E : {0, 1}n × {0, 1}t →
{0, 1}m, where t = O((log ε−1)(log2 n)/δ2) and m = Ω(δ2n/ log δ−1).

3 Simulating BPP Using a Block-Wise δ-source

3.1 A Hashing Lemma

One of our key tools is the Leftover Hash Lemma. The Leftover Hash Lemma was introduced
in [ILL] in order to construct cryptographically secure pseudo-random generators from one-way
functions. It was then used extensively in [IZ] to construct pseudo-random generators for various
tasks without any complexity assumptions. A similar lemma was also used in [BBR].

In order to state this lemma, we define

Definition 13 (CWe) Let A and B be two sets, and H a family of functions from A to B. H is
called a universal family of hash functions if for every x1 6= x2 ∈ A and y1, y2 ∈ B,

Prh∈H [h(x1) = y1 and h(x2) = y2] = 1/|B|2.

It is well known that there are universal families of hash functions from {0, 1}m to {0, 1}n of
size 22m (in fact, of size 2m+n, but we don’t need this better bound).

The Leftover Hash Lemma shows that hash functions can be used as extractors, except that
instead of adding a small number of truly random bits, we are adding a large number. The Leftover
Hash Lemma was originally stated in terms of flat δ-sources, but it is a simple corollary of the proof
that it holds for general δ-sources.
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Leftover Hash Lemma [ILL]: Let A ⊂ {0, 1}n, |A| ≥ 2u. Let e > 0, and let H be a universal
family of hash functions mapping n bits to u − 2e bits. Then the distribution (h, h(x)) is quasi-
random within 1/2e (on the set H × {0, 1}u−2e), where h is chosen uniformly at random from H,
and x uniformly from A.

Corollary 1 The conclusion above holds if x is chosen from any δ-source, δ = u/n.
Although the extractor requires far fewer auxiliary bits than the Leftover Hash Lemma, the

Leftover Hash Lemma has some advantages over the extractor. The Leftover Hash Lemma gives a
smaller error term, and extracts a larger number of random bits.

3.2 Simulating BPP

The most natural way to extract bits from a block-wise δ-source using the Leftover Hash Lemma
requires many blocks from the block-wise δ-source. This method is described by the following
lemma, which essentially strengthens related lemmas in [Va1] and [CG1]. This lemma is not
necessary for the BPP simulation, but is helpful to better appreciate Lemma 7. Intuitively, because
the Leftover Hash Lemma says that the ordered pair (h, h(x)) is close to uniform, we may use the
same hash function repeatedly.

Lemma 6 Let H be a universal family of hash functions mapping l bits to m = δl − 2e bits, and
let D be a block-wise δ-source on ({0, 1}l)k. If ~X = X1 . . . Xk is chosen according to D and h is
chosen uniformly at random from H, then the distribution of (h, h(X1), . . . , h(Xk)) is quasi-random
to within k2−e.

Proof. Following the proof of Lemma 7, due to [NZ], it is easiest to prove this by working
backwards. Namely, we proceed by induction from i = k to i = 1 on the statement: for any sequence
of values x1 . . . xi, the distribution of (h, h(Xi+1), . . . , h(Xk)) conditioned on X1 = x1, . . . , Xi = xi,
is quasi-random to within (k − i)2−e.

This is obvious for i = k. Suppose it is true for i+1. Fix the conditioning X1 = x1, . . . , Xi = xi,
and let Di+1 denote the induced distribution on Xi+1. Since, by the induction hypothesis, for every
xi+1, the induced distribution on (h, h(Xi+2), . . . , h(Xk)) is quasi-random to within (k− i− 1)2−e,
we have that the distribution D′ of (Xi+1, h, h(Xi+2), . . . , h(Xk)) is within (k − i − 1)2−e of the
distribution D′′ = Di+1 × Ui+1, where Ui+1 is the uniform distribution on H × {0, 1}(k−i−1)m.

We now apply a deterministic function f to distributions D′ and D′′, namely using the second
argument as a hash function to hash the first argument and then switching the order of the first
two arguments. Thus, the distribution f(D′) of (h, h(Xi+1), . . . , h(Xk)) is within (k − i − 1)2−e

of the distribution f(D′′) of (h, h(Xi+1), Yi+2, Yi+3, . . . , Yk) obtained by picking Xi+1 according to
Di+1, and (h, Yi+2, . . . , Yk) independently and uniformly at random in H × ({0, 1}m)k−i−1. Using
Corollary 1 f(D′′) is quasi-random to within 2−e, since we only added perfectly random bits at the
end. Thus, by the triangle inequality, f(D′) is quasi-random to within (k − i)2−e. This completes
the induction and the proof of the lemma. 2

Unfortunately, for the reductions from a general δ-source to a block-wise δ-source, we need to
use a block-wise δ-source with fewer blocks. The following algorithm, taken from [NZ], allows us
to do this. The idea is to view the initial 2l truly random bits as a hash function h mapping l
bits to δl/2 bits, and to have the first block X1 from the block-wise δ-source be l bits long. By
the Leftover Hash Lemma, the ordered pair (h, h(X1)) is almost random. At this point, we have
2l + δl/2 almost-random bits, so we may view this as a new hash function which hashes l + δl/4
bits to (δ/2)(l + δl/4) bits. We therefore have the second block from the block-wise δ-source be
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l + δl/4 bits. Continuing in this manner, we get geometrically increasing blocks, so the algorithm
needs only O((log n)/δ) blocks.

The problem is that this doesn’t quite work. The Leftover Hash Lemma fails if the δ-source
can depend on the hash function. That is the situation here: the second block depends on the first
block, but the first block helps define the hash function. Surprisingly, the algorithm works if the
blocks are output in reverse order, with geometrically decreasing lengths. The intuition for this is
that if an adversary could choose an arbitrary δ-source after seeing the hash function, we have no
control. On the other hand, if an adversary could choose an arbitrary ε-quasi-random distribution
for a hash function after seeing the output from a δ-source, the adversary can affect the error only
by ε.

Function C:
The function has 3 parameters: δ, the quality of the source; l1, ls, the largest and smallest block

sizes.

1. INPUT: x1 ∈ {0, 1}l1 . . . xs ∈ {0, 1}ls ; y ∈ {0, 1}2ls . Here li−1/li = (1 + δ/4) for 1 < i ≤ s.

2. We assume for each i a fixed universal family of hash functions Hi = {h : {0, 1}li →
{0, 1}δli/2}. Each function in Hi is described by 2li bits.

3. hs ← y

4. For i = s downto 1 do hi−1 ← hi ◦ hi(xi)

5. OUTPUT (a vector in {0, 1}m): h0, excluding the bits of hs.

Lemma 7 [NZ] Let D be a block-wise δ-source on {0, 1}l1× . . . {0, 1}ls. If ~X = X1 . . . Xl is chosen
according to D and Y is chosen uniformly at random in {0, 1}2ls, then the distribution of C(X,Y )◦Y
is quasi-random to within 2 · 2−δls/4.

Proof. As in Lemma 6, we will prove by induction from i = s down to i = 0 the following claim,
which clearly implies the lemma.

Claim: For any sequence of values x1 . . . xi, the distribution of hi conditioned on X1 = x1, . . . , Xi =
xi, is quasi-random to within εi, where εi =

∑s
j=i+1 2−δlj/4.

This claim is clearly true for i = s. Now suppose it is true for i + 1. Fix the conditioning
X1 = x1, . . . , Xi = xi, and let Di+1 denote the induced distribution on Xi+1. Since, by the
induction hypothesis, for every xi+1, the induced distribution on hi+1 is quasi-random, we have
that the distribution (Xi+1, hi+1) is within εi+1 of the distribution Di+1 × Ui+1, where Ui+1 is the
uniform distribution on Hi+1.

Thus, the distribution of hi is within εi+1 of the distribution D′ of (h, h(Xi+1)) obtained by
picking Xi+1 according to Di+1, and hi+1 independently and uniformly at random in Hi+1. Using
Corollary 1 D′ is quasi-random to within 2−δli+1/4. 2

4 Reduction to Block-Wise Source with O(log n) Blocks: BPP

A δ-source is not necessarily a block-wise δ-source or close to one; all the randomness could be
concentrated at the beginning, say. In order to create a distribution close to a block-wise δ-source,
we need to add randomness. The idea for doing this is to take a pseudo-random permutation of a
δ-source. Hopefully the randomness will spread out, and we will have a block-wise δ-source.

11



This is not quite true, however, as the randomness can get concentrated at the front. To
illustrate this, imagine two bits which are always equal but otherwise uniformly distributed. Then
whichever comes first in the permuted order will add randomness; the other will not. Elaborating
on this idea, consider the 1/2-source where the first n/2 bits are perfectly random, and the next
n/2 bits are equal to the first n/2 bits. In a pseudo-random permutation, we would expect almost
all the last

√
n bits to have already appeared among the first n−

√
n bits, and therefore not to be

very random conditional on the first n−
√
n bits.

We get around this problem by using only the first δn/4 bits of the permutation. The pseudo-
random generator for the permutations is based on pairwise independence, and is described below.

4.1 Extracting a block

In order to convert a δ-source into a distribution close to a block-wise δ-source, we must obtain
smaller blocks which are close to δ-sources. In this section we show how to obtain one such block.

The idea to do this is as follows. Intuitively, a δ-source has many bits which are somewhat
random. We wish to obtain l bits which contain a reasonable fraction of these somewhat random
bits. We cannot do this deterministically, as an adversary can make any δn of these n bits somewhat
random. We therefore pick the l bits at random using pairwise independence. We then use the
following standard lemma:

Lemma 8 Let T ⊆ {1, 2, . . . , n}, |T |/n ≥ α. If the multi-set S = {s1, . . . sl} is chosen pairwise
independently from {1, 2, . . . , n}, then

Pr[|S ∩ T | ≥ αl/2] > 1− 4/αl.

Only 2 log n random bits suffice to pick pairwise independent random variables: say there is a
finite field F of size n (e.g. n is a power of 2), then if a, b are chosen uniformly at random then
si = ai+ b, i = 0, . . . , l − 1, are pairwise independent. This probability space is also nice in that if
a 6= 0, then all the si are distinct. This yields the following corollary:

Corollary 2 Lemma 8 also holds if S is viewed as a set (i.e. delete multiple elements), if the
pairwise independent probability space above is used.

Thus, we can describe our function to extract blocks:

The function B:
The function has 3 parameters: n, the size of the original input; l, the size of the output; and

δ, the quality of randomness needed.

1. INPUT: x ∈ {0, 1}n; y ∈ {0, 1}t (where t = 2 log n).

2. Use y to choose a set {i1 . . . il} ⊂ {1 . . . n} of size l as described above.

3. OUTPUT (a vector in {0, 1}l): xi1 . . . xil .

Lemma 9 Suppose D is a δ-source on {0, 1}n and ~X is chosen according to D. Then for all
but an ε fraction of y ∈ {0, 1}t the distribution of B( ~X, ~y) is within ε from a δ′-source, where
δ′ = cδ/ log δ−1 and ε = 3/

√
δ′l.
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We use the proof of this lemma given in [NZ], with a simplified proof of Lemma 11 due to
Leonard Schulman. The intuition is best seen by considering a simple proof to a slightly weaker
conclusion: for all but an ε fraction of the ~y’s the distribution of B( ~X, ~y) has Ω(δl) entropy. The
distribution on ~X clearly has entropy H( ~X) of at least δn. Let qi be the conditional entropy of Xi

conditioned on X1 . . . Xi−1. From information theory, we know that
∑n
i=1 qi = H( ~X) ≥ δn. Again

from information theory we have that the entropy of the output is at least
∑l
j=1 qij . All that is

needed to complete the proof is that when {i1 . . . il} are chosen pairwise independently, the above
sum is, with high probability, close to its expected value δl.

The rest of this section is devoted to proving the slightly stronger conclusion, that the output
is near a δ′-source. Our proof tries to retain the structure of the above proof but, since we do not
have the powerful tools of information theory at our disposal, the proof is not very simple. The
difficulty is perhaps best appreciated by observing that it is possible that for all ~y, B( ~X, ~y) is not a
δ′-source (for any δ′), but only statistically close to a δ′-source. To see this, consider the following
(1 − l/n)-source: pick y′ uniformly at random, use this to choose a set {i1, . . . , il} as described
earlier, set Xi1 = . . . = Xil = 0, and choose the other Xj uniformly at random. Thus, for any ~y,

with probability 1/2|y| = 1/n2, B( ~X, ~y) is the all 0 string.

Fix a δ-source D. We need the following definitions (which are relative to D).

Definition 14 For a string ~x ∈ {0, 1}n and an index 1 ≤ i ≤ n, let

pi(~x) = Pr ~X∈D[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1].

Index i is called good in ~x if pi(~x) < 1/2 or pi(~x) = 1/2 and xi = 0.

The part of the definition with pi(~x) = 1/2 is to ensure that exactly one of xi = 0 and xi = 1 is
good, for a given prefix.

Definition 15 ~x is α-good if there are at least αn indices which are good in x.

Definition 16 For S ⊆ {1, 2, . . . , n}, ~x is α-good in S if there are at least α|S| indices in S which
are good in ~x.

Definition 17 S is α-informative to within β if

Pr ~X∈D[ ~X is α− good in S] ≥ 1− β.

Denote by Sy the set of size l of indices chosen pairwise independently using the random bits ~y.
We will prove two lemmas which together clearly imply Lemma 9.

Lemma 10
Pr~Y [SY is δ

′ − informative to within ε] ≥ 1− ε.

Lemma 11 Fix a set of indices S = {i1 . . . il} that is δ′-informative to within ε. Then, the distri-
bution of Xi1 . . . Xil induced by choosing ~X according to D is ε-near a δ′-source.

Proof. Fix any string xi1 . . . xil . Let

at,j = Pr[Xi1 = xi1 ∧ · · · ∧Xij = xij ∧ exactly t of the indices i1, . . . , ij are good].
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Claim:
∑
t at,j2

t ≤ 1 for all j, 0 ≤ j ≤ l. This implies
∑
t≥δ′l at,l ≤ 2−δ

′l. Thus the contribution to

the probability of any string xi1 . . . xil from x’s which are δ′-good in S is at most 2−δ
′l. Since this

accounts for 1− ε of the total probability, this will prove the lemma.
Proof of Claim: By induction on j. The base case of j = 0 is easy. Assume known for j; we
prove for j+ 1. Consider any prefix r up to position ij+1− 1 which so far agrees with xi1 . . . xij . It
has the form r = w1xi1w2xi2w3 . . . wjxijwj+1 where the w’s are strings.

Note that a particular prefix contributes to exactly one at,j ; this contribution is the probability
that this prefix occurs. Suppose r has t good indices among i1, . . . , ij . If ij+1 is not a good index,
then the contribution of r ◦ xij+1 to at,j+1 is at most the contribution of r to at,j . If ij+1 is a good
index, then by the definition of good index, the contribution of r ◦ xij+1 to at+1,j+1 is at most half
the contribution of r to at,j . In either case,

∑
t at,j+12t ≤

∑
t at,j2

t ≤ 1.
2

4.1.1 Proof of Lemma 10

We first need the following lemma showing that most ~x’s have many good indices.

Lemma 12
Pr ~X∈D[ ~X is not α− good] ≤ 2−c1δn,

where α = c1δ/ log δ−1 for some absolute positive constant c1.

Proof. Let us count the number of x’s that are not α-good. There is a natural 1-1 correspondence
between sequences in {good, bad}n and strings ~x; namely one in which i is bad in ~x whenever the
ith element of the sequence is “bad”. Thus, the number of x’s that are not α-good is at most the

number of n-bit strings with less than αn “good” locations, i.e.
∑dαne−1
i=0

(n
i

)
. Since D is a δ-source,

the probability of each string is at most 2−δn, so

Pr ~X∈D[ ~X is not α− good] ≤ 2−δn
bαnc∑
i=0

(
n

i

)
≤ 2−c1δn

for c1 small enough. 2

Proof of Lemma 10: For any fixed α-good string ~x, we can apply Lemma 8 to the set of good
indices and obtain

PrY [~x has αl/2 good indices in SY ] > 1− 4/αl.

Using Lemma 12 it follows that

Pr ~X,Y [ ~X has αl/2 good indices in SY ] > 1− 4/αl − 2−c1δn.

Now set δ′ = α/2 and ε =
√

4/αl + 2−c1δn ≤ 3/
√
αl, and by Markov’s inequality

PrY [SY is δ
′ − informative to within ε] ≥ 1− ε.

2
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4.2 Extracting a Block-Wise δ-source

The simplest way to use the previous section to get a distribution close to a block-wise δ-source
would be to choose independently random y’s and use these to extract different blocks. Indeed,
this was done in [NZ]. However, this would require too many random bits.

Instead, we extract one large block, as described in the previous section. We first argue that
initial segments of the block of geometrically growing size are close to δ′-sources. It then follows that
the distribution of the large block is close to a block-wise δ-source, essentially because a δ-source
of length l will still be a δ/2-source even if the first δl/2 bits are removed. We want geometrically
decreasing block sizes, however, in order to utilize Lemma 7; in the last step we show how to get
the correct block sizes.

We will be interested in initial segments of length mi = l(4/δ′)i−1:

Lemma 13 Suppose D is a δ-source on {0, 1}n and ~X is chosen according to D. Then for all but
an ε′ fraction of y ∈ {0, 1}t, for all i with mi ≤ n the distribution of the first mi bits of B( ~X, ~y) is
within ε′ of a δ′-source, where δ′ = cδ/ log δ−1 and ε′ = 6/

√
δ′l.

Proof. Applying Lemma 9 to each initial segment, we see that for all but εi = 3/
√
δ′mi of the

y ∈ {0, 1}t, the first mi bits of B( ~X, ~y) is within εi of a δ′-source. The lemma follows since
∑
εi ≤ ε′.

2

Lemma 14 Suppose D′ is a distribution on {0, 1}n′ such that if Z is chosen according to D′, then
for all i with mi ≤ n′ the distribution of the first mi bits of Z is a δ′-source. Then D′ is within
21−l of a block-wise δ′/2-source with block sizes ni = mi−mi−1, with the convention that m0 = 0.

Proof. Write Z = Z1 ◦ Z2 ◦ . . . ◦ Zs, where the length of Zi is ni.
We call the vector of values z1, . . . , zi tiny if

Pr[Z1 = z1, . . . , Zi = zi] ≤ 2−2mi .

Since there are at most 2mi possible values for z1 . . . zi, Pr[Z1 . . . Zi is tiny] ≤ 2−mi .
For any z1 . . . zi consider the distribution D′z1...zi defined to be the distribution on Zi+1 condi-

tioned on Z1 = z1 . . . Zi−1 = zi−1. If z1 . . . zi is not tiny, then for all x ∈ {0, 1}ni+1 :

D′z1...zi(x) ≤ 22mi2−δ
′mi+1 = 2−(δ′/2)mi+1 ≤ 2−(δ′/2)ni+1 ,

and thus D′z1...zi is a δ′/2-source.
Thus the distance from D′ to a block-wise δ′/2-source is at most

Pr[(∃i)Z1Z2 . . . Zi is tiny] ≤
s−1∑
i=1

2−mi < 21−l

. 2

Corollary 3 Suppose D is a δ-source on {0, 1}n and ~X is chosen according to D. Then for all
but an ε′ fraction of y ∈ {0, 1}t, B( ~X, ~y) is within ε′ + 21−l of a block-wise δ′/2-source with block
sizes ni = mi −mi−1, where δ′ and ε′ are as above.

Now that we have a block-wise source (although the block sizes ni are not what we want),
we can use the same random bits on each block to extract blocks of the correct size li, as in the
following algorithm for the extractor.
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Description of Extractor E:

1. INPUT: x ∈ {0, 1}n; y1, y2 ∈ {0, 1}t1 ; y0 ∈ {0, 1}t2 (where t1 = 2 log n, t2 = 2ls).

2. z ← B(x, y1). (We use B with parameters n,ms, δ.)

3. Let z = z1 ◦ z2 ◦ . . . ◦ zs, where the length of zi is ni.

4. For i = 1 . . . s do wi ← B(zi, y2). (We use B with parameters ni, li, δ
′/2.)

5. OUTPUT (a vector in {0, 1}m): C(w1 . . . ws, y0). (We use C with the parameters δ′′, l1, ls.)

Lemma 15 Suppose Z = Z1 ◦ Z2 ◦ . . . ◦ Zs is the output of a block-wise δ′/2-source on {0, 1}n,
with block lengths |Zi| = ni. Let Wi = B(Zi, y2) with parameters as above. Then for all but an ε′′

fraction of the y2’s, the distribution of W = W1 ◦W2 ◦ . . .◦Ws is within ε′′ of a block-wise δ′′-source,

for δ′′ = c(δ′/2)/ log(2/δ′) and ε′′ = 15(δ′′)−3/2l
−1/2
s .

Proof. By Lemma 9, if Zi is a δ′-source conditional on Z1, . . . , Zi−1, then for all but ε′′i = 3/
√
δ′′li of

the y2’s, Wi is a δ′′-source conditional on Z1, . . . , Zi−1, and hence also conditional on W1, . . . ,Wi−1.
Let σi =

∑i
j=1 ε

′′
i . Then it follows inductively that for all but σi of the y2’s, W1 ◦ . . . ◦Wi is within

σi of a block-wise δ′′-source. 2

Corollary 4 Suppose D is a δ-source on {0, 1}n and ~X is chosen according to D. Then for all but
at most an ε/3 fraction of y1, y2 pairs, the output at Step 4 is within ε/3 of a block-wise δ′′-source.

Proof. Use Corollary 3 and Lemma 15, and note that δ′′ ≤ δ′/2 and 21−l ≤ 2/
√
δ′l. Finally, recall

that ε/3 = 20(δ′′)−3/2l
−1/2
s . 2

We can now prove that our extractor construction works:

Theorem 5 For any δ-source D the distribution of E(X,Y ) ◦ Y induced by choosing X accord-
ing to D and Y uniformly in {0, 1}t is ε-quasi-random on {0, 1}m × {0, 1}t. Here t = 4 log n +

O((log6 δ−1)/(δ3ε2)) and m = nΩ((log2 δ−1)/δ).

Proof. By Corollary 4 for all but ε/3 fraction of pairs y1, y2 the distribution on the w’s is within
ε/3 of a block-wise δ′′-source. For each such value of the y’s, by Lemma 7, the output concatenated
with y0 is quasi-random within 2ε/3. Add the ε/3 “bad” y’s and the lemma follows. 2

We can now conclude

Theorem 2: There is an algorithm that, given any δ > 0, takes time rO((log2 δ−1)/δ) to simulate
BPP using R = rO((log2 δ−1)/δ) bits from a δ-source.

For the reader’s reference, we attach a summary of the way the parameters are chosen below.
The reader is advised to skip this on the first reading.

Parameters:

1. The parameters n, ε and δ are given. We assume 1/n ≤ δ ≤ 1/2.

2. δ′ = cδ/ log δ−1, where c is from Lemma 9.

3. δ′′ = c(δ′/2)/ log(2/δ′), where c is from Lemma 9.

4. s is chosen to be the largest integer such that ((4 + δ′)/δ′′)s ≤ n. Thus s = O((log n) log δ−1).

5. ls is chosen to be the smallest integer such that 60(δ′′)3/2l
−1/2
s ≤ ε. Note that this also implies

2−δ
′′ls/4 ≤ ε/3. Thus ls = O(ε−2(δ/ log2 δ−1)−3).
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6. For each i ≥ 0, set li−1 = li(1 + δ′/4). Using this and the definition of s, l0 = nΩ(δ/ log2 δ−1).

7. Set m0 = l0, and for each i > 0 set mi = (4/δ′)mi−1.

8. t1 = 2 log n.

9. t2 = 2ls. Thus t2 = O(ε−2(δ/ log2 δ−1)−3).

10. The length of the second parameter to E is given by t = 2t1 + t2. Thus t = 4 log n +
O((log6 δ−1)/(δ3ε2)).

11. The length of the output of E is given by m = 2l0 − ls. Thus m = nΩ(δ/ log2 δ−1).

5 Reduction to Block-Wise Source with O(log n) Blocks: RP

In this section, we show how to simulate RP using a δ-source, given a simulation A using a block-
wise δ′-source with geometrically decreasing length blocks, where δ′ = δ/18. The intuition is best
described for reducing the problem to a simulation A′ using a block-wise δ′-source with k = O(log r)
equal length blocks (recall that r is the number of random bits required by the RP algorithm). We
divide the output of the δ-source into k′ blocks. At least k ≥ δk′/3 (say) of the blocks will be close

to δ/3-sources, conditional on the previous blocks.3 We therefore run A′ on all
(k′
k

)
k-subsets of

blocks.
Fix a k-subset S of the k′ blocks. To get the geometrically decreasing block lengths li that

we need, we divide the ith block of S into sub-blocks of size li. For the same reason as above,
we expect a fraction at least δ/9 of these sub-blocks to be close to δ/9-sources. If we tried all
possible sequences of sub-blocks, we would arrive at the nO(logn) algorithm of [Zu1]. To get down
to polynomial time, we need to consider walks on expander graphs, and must introduce a new
lemma about expanders.

We now need to modify, elaborate, and formalize the above intuition. Fix a simulation A using
k blocks x1, . . . , xk from a block-wise δ′-source, and fix an input to an RP algorithm. Note that
our simulation (Function C of Subsection 3.2) requires k = O((log r)/δ′). Rather than showing
that many blocks of a δ-source will be close to δ/3-sources, we show, in Lemma 16, that there are
many sequences of blocks on which A outputs the correct answer. We then show that the output
of a δ-source is likely to have such a sequence as a subsequence.

Denote x1 ◦ . . . ◦ xi by yi, where ◦ denotes concatenation. Define

p(yi, S) = Pr[A finds witness starting from yi],

where the probability is taken over the remaining k− i blocks from the block-wise δ′-source S. Now
define

q(yi) = inf
block-wise δ′-sources S

{p(yi, S)}.

We now define good* and bad* according to the worst-case block-wise δ′-source. Namely, call
xi bad* with respect to yi−1 if yi−1 ◦ xi has one of the 2δ

′li least q(yi)’s, for yi’s continuations of
yi−1 (break ties arbitrarily); xi is good* if it is not bad*. In other words, xi is bad* if A, when
fed yi−1 ◦ xi followed by the output of a worst case block-wise δ′-source, has a low probability of
finding a witness. Thus a worst-case block-wise δ′-source would place positive probability only on
xi which are bad*.

3This is not quite true, but gives reasonable intuition.
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Lemma 16 On input any k good* strings x1, . . . xk, A outputs the correct answer.

Proof. We prove inductively that q(yk) > 0; this suffices since q(yk) is either 1 or 0 depending on
whether A outputs the correct answer or not. Now q(y0) > 0, since A has positive probability of
outputting the correct answer for any block-wise δ′-source. Moreover,

q(yi+1) ≥ Ebad* strings zi+1
q(yi ◦ zi+1) = q(yi).

2

Thus, we need to get good* strings from the output of a δ-source. The following lemma would
enable us to do this if all the blocks had equal length li = l: we could request k′l bits from the
δ-source, run A on all k-subsets of l-bit blocks, and with high probability one of them would contain
all good* strings. To get intuition, think of δ = Θ(1), l = r and k′ = Θ(k) = Θ(log r).

Lemma 17 [Zu1] Let δ, l ≥ 3/δ, and k be given. Let k′ = 3k/δ, and set R = k′l. Let z be the
R-bit output from the δ-source. Write z = z1 ◦ z2 ◦ . . . ◦ zk′, where each zi has length l. For each
initial string wi = z1 ◦ z2 ◦ . . . ◦ zi, label any 2δl/3 of the zi+1’s as bad; the others we call good. Then

Pr[for ≥ k values of i, zi is good] > 1− 2−δkl/3,

where the probability is taken over any δ-source. In particular, the number of z with fewer than k
values of good i’s is less than 2δR.

The plan will be to label zi inductively as follows (although we will actually do something more
complicated later). Let zi1 , zi2 , . . . , zip be the good blocks seen so far, where i1 < i2 < . . . < ip < i
(p = 0 is possible). If p ≥ k, then our labeling of zi is irrelevant. Otherwise, label zi good iff zi is
good* with respect to the prefix zi1 ◦ zi2 . . . ◦ zip .
Proof. Construct a tree corresponding to the outputs z of the source as follows: let the nodes be
all possible initial sequences wi for each i, 0 ≤ i ≤ k′, and let the parent of wi be wi−1. Define an
edge (wi−1, wi) to be bad (good) if the string zi is bad (good) with respect to wi−1. We wish to
show that few of the 2δR leaves have root-leaf paths with less than k good edges.

To bound this number, we observe that each parent has at most 2δl/3 children connected by
bad edges, and at most 2l children. Thus, the total number of root-leaf paths with k′ − k specified
bad edges (e.g. the edges at distances 2,3,6,7 from the root must be bad) is at most

2kl2(k′−k)δl/3,

so the total number of root-leaf paths with at least k′ − k bad edges is(
k′

k

)
2kl2(k′−k)δl/3.

Using
(k′
k

)
< 2k

′
and substituting the definition of k′ in the above formula, we bound the number

by 2−δkl/32δR, as required. 2

We need to get good* blocks of different lengths (namely, geometrically decreasing) in order to
apply Lemma 7. We do this by defining good r-bit blocks as ones with many good* li-bit blocks;
then we get good r-bit blocks and search these for good* li-bit blocks. The problem with this is that
if we use a brute-force search for the good* blocks, then we end up with an algorithm taking time
roughly

∏
(r/li) = rO(log r). Indeed, this was the main obstacle to improving the rO(log r) algorithm

of [Zu1] to polynomial.
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To get around this problem, note that the brute force approach does not exploit the fact that
good r-bit blocks have many (an Ω(δ) fraction) good* li-bit blocks. We exploit this by introducing
a new lemma about paths on expander graphs.

We first give a way to define “good” for use in Lemma 17. We will use Lemma 17 with l = r.
We may assume without loss of generality that li|r (by using a padding argument). Then we
inductively define whether zi is good with respect to the initial sequence wi−1 = z1 ◦ . . . ◦ zi−1 as
follows: count the number p of good blocks in the string wi−1, and assume p < k (if p ≥ k, our
labeling won’t matter). Write the jth good block zj = xj,1 ◦ . . . ◦ xj,r/lj as a concatenation of lj-bit
sub-blocks. An initial sequence yp = x1,v1 ◦ x2,v2 ◦ . . . ◦ xp,vp is called all-good if each xj,vj is good*
with respect to yj−1. We will choose a subset Tp of possible initial sequences yp, and we will ensure
|Tp| ≤ 2δ

′lp+1 (recall that δ′ = δ/18). We say xp+1 ∈ {0, 1}lp+1 is good** with respect to Tp if it is
good* with respect to each all-good yp ∈ Tp, and bad** otherwise. Then the number of strings in
{0, 1}lp+1 which are bad** is at most |Tp|2δ

′lp+1 ≤ 22δ′lp+1 . Call zi good if at least a fraction δ/9 of
its lp+1-bit sub-blocks are good** with respect to Tp. Replacing δ, l, and “good” in Lemma 17 with
δ/3, lp+1, and “good**”, we see that at most 2δr/3 of r-bit strings are bad. Thus, our definition of
good is a valid labeling, and Lemma 17 applies: if we ask for R = k′l bits from a δ-source, with
high probability at least k of these blocks will be good. We find these good blocks by running our
algorithm on each k-subset, multiplying our time by

(k′
k

)
= rO((log δ−1)/δ). Thus, we assume we have

k good r-bit blocks z1, . . . , zk.
If there were only one good** sub-block of each length, then we would have to use brute force.

However, we know that a constant fraction of the sub-blocks are good**. We exploit this fact by
using the following lemma:

Lemma 18 Let G = (V,E) be an expander graph (directed or undirected) on n = |V | nodes, such
that every set of size n/2 has at least n/2 + αn neighbors. For any k, let S1, . . . , Sk be arbitrary
subsets of V such that |Si| ≥ (1− α)n. Then there exists a path v1, . . . , vk in G such that vi ∈ Si.
Proof. By induction on k in the statement: there are at least n/2 endpoints vk in such paths
v1, . . . , vk. This is true for k = 1; if it is true for a given k, then any neighbor of an endpoint that
also lies in Sk+1 is a possibility for vk+1. But the neighbor set is of size at least n/2 + αn, so its
intersection with Sk+1 is at least n/2. 2

Viewing the degree 7 expanders in [GG] as directed graphs (instead of bipartite graphs), we see
that these graphs have α = (2−

√
3)/4, as well as being explicitly constructible.

We apply the lemma as follows: Using n = r, we’d like to set Si equal to the set of good**
sub-blocks of the ith good block zi. However, we would then have a fraction δ/9 of the sub-blocks
in Si, whereas we want a fraction 1 − α. We therefore set n = rt, and let Si represent t-tuples of
sub-blocks, of which at least one is good, where t is chosen so that (1− δ/9)t ≤ α, so t = O(1/δ).
We also must work with a modulus, so more formally:

Si = {(s1, . . . , st)|for some j, the sj(modr/li)th sub-block of zi is good*}.

We then don’t have to run our algorithm on all combination of sub-blocks, but only on ones
given by paths on the [GG] expanders. Thus Tp consists of, for each of n7p−1 paths of length

p in a degree 7 expander, all tp = rO((log δ−1)/δ) possible combinations of sub-blocks. To ensure
|Tp| ≤ 2δ

′lp+1 , it suffices to ensure |Tk−1| ≤ 2δ
′lk , since |Tp| grows with p but lp+1 shrinks with p.

Thus lk = O((log δ−1)/δ2), and we have proved

Theorem 1: There is an algorithm that, given any δ > 0, takes time rO((log δ−1)/δ2) to simulate
RP using R = O((r log r)/δ2) bits from a δ-source.
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6 The Unapproximability of MAX CLIQUE

Let ω denote the size of the maximum clique. Feige, et.al. [FG+] showed

Theorem 7 If for some ε the task of approximating ω to within a factor of 2(logn)1−ε is in P̃ , then
NP̃ = P̃ (P̃ denotes quasi-polynomial time, i.e. TIME(2polylog)).

Instead of considering the approximation factor as a function of n, it seems like a more balanced
question to ask for a function of ω. For example, there is a simple polynomial-time algorithm to
distinguish between graphs having ω equal to O(1) or 2(logn)1−ε , whereas the proof in [FG+] shows
that it is difficult to distinguish between graphs having ω equal to nδ or nδ2(logn)1−ε . In light of
this, we show:

Theorem 8 If for any constant t there is a quasi-polynomial time algorithm that always outputs
a number between ω1/t and ωt, then NP̃ = P̃ .

Note that such an algorithm has to decide among only O(log log n) values (some approximation
of the form 2t

i
will do). Thus one might have thought it would be easier to construct such an

approximation algorithm.
Our proof closely follows the proof of [FG+], making great use of the proof in [BFL] that NEXP

= MIP. Actually, we really use the equivalent theorem (see [FRS]) that any language in NEXP is
accepted by a polynomial time probabilistic oracle machine.

Definition 18 A language L is accepted by a probabilistic oracle machine M iff

x ∈ L ⇒ (∃oracle O)Prr[M
O(x, r)] = 1

x 6∈ L ⇒ (∀oracles O)Prr[M
O(x, r)] < 1/4.

Denoting the maximum number of random and communication bits used on inputs of size n as
r(n) and c(n), respectively, Feige et.al. give the following improvement of [BFL]:

Theorem 9 (FG+) Any language L ∈ NTIME(T (n)) (for n ≤ T (n) ≤ 2poly(n)) is accepted
by a probabilistic oracle machine running in time T (n)O(log log T (n)) and having r(n) + c(n) =
O(log T (n) log log T (n)).

Using this, they construct a graph Gx which has a large clique iff x ∈ L. In order to do this,
they define transcripts and a notion of consistency among them. A transcript is basically a set of
questions to and answers from the oracle; two transcripts are consistent if the oracle is consistent:

Definition 19 (FG+) A string t = r, q1, a1, . . . , ql, al is a transcript of a probabilistic oracle
machine M on input x if |r| = r(n), |q1, a1, . . . , ql, al| ≤ c(n), and for every i, qi = M(x, r,<
q1, a1, . . . , qi−1, ai−1 >). A transcript is accepting if M on input x, random string r, and history of
communication (questions and answers) < q1, a1, . . . , ql, al > accepts x.

Definition 20 (FG+) Two transcripts t = r, q1, a1, . . . , ql, al and t̂ = r̂, q̂1, â1, . . . , q̂l, âl are con-
sistent if for every i, qi = q̂i implies ai = âi.

We can now define Gx: the vertices are all accepting transcripts, and two nodes are connected
iff the corresponding transcripts are consistent. It is then not hard to see:
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Lemma 19 (FG+) maxO Prr[M
O(x, r) accepts] · 2r(n) = ω(Gx).

Thus, if x ∈ L then ω(Gx) = 2r(n) and if x 6∈ L then ω(Gx) < 2r(n)/4.
To get the second part of their theorem, Feige et.al. construct the graph G′x corresponding to

a protocol M ′. M ′ runs logO(1) T (n) independent iterations of M on x. This reduces the error
probability if x 6∈ L and therefore produces a wider separation in the clique sizes.

Yet once we fix an oracle O, MO basically corresponds to a co-RP machine: always accepting
when x ∈ L and usually rejecting if x 6∈ L. Thus we can apply Theorem 1, which has the following
corollary:

Corollary 5 Let ε > 0 be given. Then we can choose a constant c such that the following holds.
Let A be any co-RP algorithm that uses r bits to reduce the error probability to 1/4 if x 6∈ L. Then
for s = cr log r there is an algorithm that uses s random bits, produces m = poly(r) r-bit strings
y1, . . . , ym such that if x 6∈ L, the probability that A accepts all yi is at most 2−(1−ε)s.

Proof of Theorem 8: Take ε = 1/t2 and form M ′′ by running M on x with the random strings
y1, . . . , ym. Construct G′′x corresponding to M ′′. Observe that if x ∈ L then ω(G′′x) = 2s, and if
x 6∈ L then ω(G′′x) < 2s/t

2
. Thus any algorithm that always outputs a number between ω(G′′x)1/t

and ω(G′′x)t can always tell whether or not x ∈ L. Since G′′x has at most 2m(r(n)+c(n)) = 2polylog(T (n))

vertices, this yields the theorem.
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