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Abstract

We show that modified versions of the linear congru-
ential generator and the shift register generator are prov-
ably good for amplifying the correctness of a probabilis-
tic algorithm. More precisely, if r random bits are needed
for a BPP algorithm to be correct with probability at
least 2/3, then O(r + k2) bits are needed to improve
this probability to 1 − 2−k. We also present a different
pseudo-random generator that is optimal, up to a con-
stant factor, in this regard: it uses only O(r + k) bits
to improve the probability to 1 − 2−k. This generator
is based on random walks on expanders. Our results do
not depend on any unproven assumptions.

Next we show that our modified versions of the shift
register and linear congruential generators can be used
to sample from distributions using, in the limit, the
information-theoretic lower bound on random bits.

1. Introduction

Randomness plays a vital role in almost all areas of
computer science, both in theory and in practice. Ran-
domized algorithms are often faster or simpler than the
deterministic algorithms for the same problem. Besides
speeding up computation, there are also many circum-
stances where one needs to sample from some probabil-
ity distribution. For example, a cryptographic protocol
might require a random prime or list of primes; a scien-
tific simulation modelling a probabilistic or chaotic pro-
cess (e.g. the weather) will require randomness.

Since random bits are expensive, programmers at-
tempt to minimize the amount of random bits actually
used through the utilization of pseudo-random genera-
tors (prg’s). A deterministic process is performed on a
short random “seed” to produce a much longer output. It
is hoped that this longer output will serve the same pur-
pose as a truly random string of the same size. The most
commonly used prg is some sort of linear-congruential
generator.

Recent theoretical work has provided some good ways
of conserving random bits. Blum and Micali [BM] in-
troduced the notion of a cryptographically secure prg;
Yao [Y] showed that such a generator produces output
strings which are computationally indistinguishable (in
polynomial time) from truly random strings.

Nevertheless, there are problems with using crypto-
graphically secure prg’s. First, such generators must be
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based on the existence of one-way functions, an unproven
assumption. Second, even assuming that the function in
question is one-way, the performance of such prg’s is only
guaranteed asymptotically. In a particular example, one
cannot compute exact bounds on the size of the seed
needed. Third, most such generators are too inefficient
to be used in practice. Linear congruential generators,
although known not to be cryptographically secure (see
e.g. [FKL],[P]), continue to be used in practice.

Because of these disadvantages, work has been done
to construct good generators for more specific tasks. For
example, Santha [Sa] and Sipser [Si] introduced the no-
tion of a “quasi-perfect pseudo-random generator.” A
quasi-perfect prg can be used to decrease the probability
of error of a BPP or RP algorithm from a constant < 1/2
to an exponentially small amount, using only a constant
factor more random bits. Until now, no prg was proven
to be quasi-perfect, although Vazirani [V] conjectured
that a specific prg, related to the shift register prg pre-
sented here, is quasi-perfect.

Another recent direction of research has been to theo-
retically explain the practical success of simple prg’s like
the linear congruential generator. Bach [B] and Karloff
and Raghavan [KR] have shown that linear congruen-
tial generators or variants thereof have provably good
performances when used in specific algorithms, such as
taking square roots modulo a prime and Quicksort; the
latter paper also gives a task for which the usual linear
congruential generators are inadequate.

We combine these two directions of research by prov-
ing that two very simple types of prgs, one of which is
just a minor modification of the linear congruential gen-
erator, are quasi-perfect. Thus, there is a theoretical
justification for the widely held belief that very simple,
computationally predictable generators (such as linear
congruential generators) still work well in practice.

Sipser has shown that the existence of certain types
of constructive expanders implies that of quasi-perfect
prg’s; our results could be rephrased as explicit con-
structions of Sipser expanders (with somewhat weaker
parameters than those used in [Si]).

The first construction involves taking a random walk
on a type of expander graph known to be constructible
[GG]. The proof, which was independently discovered
by Cohen and Wigderson [CWi], uses techniques simi-
lar to those in [AKS]. These quasi-perfect prg’s can be
implemented simply and efficiently using explicit con-
structions of expanders from [GG] or [LPS]. They yield
almost optimal trade-offs between the amount of ran-
domness used and the probability of error; given an al-
gorithm which uses r random bits and has a constant
< 1/2 error probability, the probability of error can be
reduced to 2−k using O(r + k) random bits.
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The second class of quasi-random prg’s can be based
on any family of universal hash functions ([CW]). In par-
ticular, we prove that modified versions of both the linear
congruential and shift register generators (from [V]) are
quasi-perfect. The modification is that only the r−O(k)
least significant bits of the generator’s output on an r bit
seed are used; the remaining bits are replaced by truly
random bits. This method uses O(r + k2) random bits
to reduce the error probability to 2−k.

The proof is based on a lemma from [ILL], and is just
one application of a general technique which can be used
to reduce the random bits used in computation. The
intuition behind this result is that, when we run a prob-
abilistic algorithm for a language, the only relevant in-
formation we need to see about the random string used
is the single bit, “Does the algorithm accept using this
string?” Thus, the entropy of the conditional distribu-
tion (given this one-bit output) is still large. We give
a way of “recycling” this entropy for future use. This
technique can be used in many situations where an al-
gorithm’s output has a smaller entropy than the number
of random bits it uses.

For example, we can use it to sample many times from
any polynomial-time samplable distribution using the in-
formation theoretic lower bound on random bits. More
concretely, suppose we wish to generate at random n bit
primes (for use in a cryptographic protocol, say). A naive
algorithm might work as follows. Pick a random n bit
number. Use a probabilistic algorithm (e.g. Rabin’s[R])
to test whether the number you picked is prime. If so,
output it. If not, start over. This algorithm uses an ex-
pected O(n2 + nt(n)) random bits, where t(n) bits are
used in the primality test, since a O(1/n) fraction of n bit
numbers are prime. For the same reason, information-
theoretically, at least n − log n + c bits are required to
generate a random prime. We show that, if a list of many
primes is desired (here, “many” means a fixed polyno-
mial in n), an amortized cost of the exact information
theoretical lower bound, i.e. n−log n+c random bits per
prime, is obtainable efficiently. (The output will deviate
from a truly random sequence of primes by an exponen-
tially small amount.) This can be construed as an ef-
fective version of Shannon’s information theoretic result
that Ent(D) is equal (within a bit) to the minimum ex-
pected number of random bits for a method of sampling
from D [Sh].

We generalize this result still further. In order to get
the amortized savings in random bits, it is not neces-
sary to always sample from the same distribution D.
An arbitrary sequence of distributions can be sampled
from; the next distribution in the sequence can depend
in an arbitrary way on the outputs of the sampler on
the preceding distributions. This method could be used
by an operating system in order to run many probabilis-
tic algorithms using as few random bits as possible, or
it could be used to reduce the total random bits used
by a probabilistic algorithm which has a subroutine or
subroutines that use more random bits than they have
outputs. The techniques presented here can be used to
reduce the amount of randomness needed in specific al-
gorithms for many types of problems (decision problems,
approximate counting, generating elements from a distri-
bution) even if the problems aren’t explicitly in one of

the forms mentioned earlier. As an example, in the final
version of this paper, we will show how to generate a
random n-bit prime within a statistical error 2−k using
O(kn) bits.

2. PRG Based on Expanders

BPP is the set of languages L ⊆ {0, 1}∗ such that
there is a deterministic polynomial time Turing machine
ML(a, x) for which

a ∈ L⇒ Pr[ML(a, x) = 1] ≥ 2/3

a 6∈ L⇒ Pr[ML(a, x) = 0] ≥ 2/3

where the probabilities are for an x picked uniformly in
{0, 1}p(|x|) for some polynomial p. If M(a, x) = 1, we
say M accepts a using random tape x.

Let L ∈ BPP, a ∈ {0, 1}n, and let r′ = p(n) be the
number of random bits required above. The usual way
of improving the success probability to 1 − 2−k is to
generate O(k) purely random strings of length r′, query
a with these random strings, and take the majority vote.
This requires O(r′k) bits. We give a scheme where it
suffices to use O(k) pseudorandom strings of length r′;
only O(r′ + k) random bits will be needed to generate
this pseudo-random sequence.

To do this, we first use the usual technique to improve
the success probability to .99. This requires r = O(r′)
bits; we could also use the technique described later to
use even fewer bits. Next, we take a random walk on an
expander, an idea used in [AKS].

A random walk on an undirected graph G is the se-
quence of vertices {Xt} visited by a particle that starts
at a specified vertex and visits other vertices according
to the following transition rule: if the particle is at ver-
tex i at time t, then at time t+ 1 it moves to a neighbor
of i picked uniformly at random. Associated with a ran-
dom walk on G is the transition matrix A describing the
probabilities of moving from one vertex to another. For
convenience, we define A as the transpose of the tradi-
tional transition matrix, i.e. Aij = 1/ deg(j) if i and j
are neighbors, and 0 otherwise.

The matrix A has eigenvalues 1 = λ1 > λ2 ≥ λ3 ≥
. . . ≥ λs ≥ −1. The only fact we’ll need about an ex-
pander is that the associated transition matrix A has
λ2 ≤ 1 − ε, for some constant ε > 0. We take G to
be the 7-regular expander on the s = 2r vertices {0, 1}r
given in [GG]. This construction has the property that
the neighbors of a vertex can be found in O(1) time, so
a random walk can be simulated efficiently.

It is also important for our construction that the λi
are bounded away from −1. Unfortunately, G is bipar-
tite, and hence λs = −1. To get around this, we do
the following modified random walk. With probability
1/2 we take a step in the random walk, and with prob-
ability 1/2 we stay where we are. This modified walk
has transition matrix (I + A)/2, which has eigenvalues
(1+λi)/2 ≥ 0. Thus, the second largest eigenvalue 1−ε/2
is still bounded away from 1.

We can now state our algorithm.

Algorithm: Let c be the least integer such that (1 −
ε/2)c ≤ 1/10. Use r random bits to find a uniformly



random start vertex X0, and perform the modified ran-
dom walk {Xt} for t ≤ 7ck. For every i ∈ {1, 2, . . . 7k}
query if a ∈ L using the r-bit pseudo-random string
represented by Xci. Output the majority vote of these
queries.

Proof of Correctness: We use the techniques in [AKS]
to show that the error probability is at most 2−k. First,
some notation:
C ⊆ G is the set of vertices representing strings for

which queries are answered correctly.
P is the vector space Rs, where s = 2r. P represents

probabilities.
V is the subspace of multiples of

p0 = (2−r, 2−r, . . . , 2−r).
W is the subspace orthogonal to V .
For p = (p1, p2, . . . , ps) ∈ P
|p| =

∑s
i=1 |pi|, the L1-norm.

‖p‖ =
√∑s

i=1 p
2
i , the L2-norm.

B =
(
(I +A)/2

)c
N : P → P is the linear transformation

N(ei) =

{
ei if i ∈ G− C
0 otherwise,

where ei is the basis vector with a 1 in the ith place
and 0’s elsewhere.
M = I −N , where I is the identity.

Note that B is the transition matrix corresponding to
c steps of the modified random walk. Thus, if the vector
p = (p1, . . . , ps) represents the probabilities of being at
the different vertices, i.e. pi = Pr[particle is at vertex i],
then Bp represents the probabilities after c steps in our
modified random walk. Furthermore, NBp represents
the probabilities of being at the different vertices and of
not being in C. Extending this idea, we see that for a
given sequence of the correctness of answers to queries,
e.g. correct, correct, incorrect, . . ., incorrect (denoted
c,c,i,. . .,i)

Pr[c,c,i,. . .,i] = |(NB) . . . (NB) · · · (NB)(MB)(MB)p0|

To bound the right-hand side, it is easier to use L2
norms. We need the following lemma:

Lemma 1 For p ∈ P ,

(i) ‖MBp‖ ≤ ‖p‖.

(ii) ‖NBp‖ ≤ ‖p‖/5.

Proof.(i) follows from the definition of M and because
the eigenvalues of B are between -1 and 1. To see (ii),
write p = v + w, v ∈ V , w ∈ W . Using Bv = v and
|G − C| ≤ |G|/100, we get ‖NBv‖ ≤ ‖v‖/10 ≤ ‖p‖/10.
The eigenvalues of B are

(
(1 + λi)/2)c, which by choice

of c have absolute value at most 1/10, for i 6= 1. Since
w is orthogonal to the eigenvector corresponding to λ1,
‖NBw‖ ≤ ‖Bw‖ ≤ ‖w‖/10 ≤ ‖p‖/10. By the triangle
inequality, ‖NBp‖ ≤ ‖NBv‖+ ‖NBw‖ ≤ ‖p‖/5.

Using |p| ≤ 2s/2‖p‖, this lemma implies that for any
sequence s with at least 7k/2 incorrect answers,

Pr[s] ≤ 2s/2‖(NB)7k/2p0‖ ≤ 2s/2(1/5)7k/2‖p0‖ = 5−7k/2

Because there are at most 27k such sequences s,

Pr[∃s with ≥ 7k/2 incorrect answers] ≤ 27k5−7k/2 < 2−k,

which is what we wanted to show.

Remark. The above directly implies a version of Vazi-
rani’s result that quasi-random sources can be used to
perform BPP computations[V2]. Specifically, there is a
δ > −1 such that if each r-bit string occurs with proba-
bility at most 2δr, the above construction works. To see
this, say a prg needs Cr bits to reduce the probability
of error to 2−r. Then there are 2(C−1)r “bad” strings of
length Cr. Thus, if δ < (1 − C)/C, the probability of
error will be 2(C−1)r2δrC = 2−Ω(r).

3. Universal Hash Functions

Let H be a family of functions mapping {0, 1}n to
{0, 1}l. We say H is universal or a universal family of
hash functions if, for every x, y ∈ {0, 1}n, x 6= y, the
probability that h(x) = h(y), for h selected randomly
from H, is 1/2l (see [CW]). We say H is almost universal
if, for every such pair, the aforementioned probability is
at most 1/2l + 1/2n

One example of a universal family of hash functions
is the set of all n × l matrices over the field with 2 ele-
ments. However, nl bits are required to specify an ele-
ment of this family. The universal and almost universal
families based on the shift register and linear congruen-
tial generators require only O(n) bits, which will prove
most useful.

Shift Register Hash Let r = r1r2 . . . rn, x =
x1x2 . . . xn ∈ {0, 1}n. Let r · x denote the inner prod-
uct of r and x modulo 2, i.e., r · x = 1 iff the number
of bit locations i, 1 ≤ i ≤ n where ri = xi = 1, is odd.
For 1 ≤ l ≤ n, let r(l) denote the l’th shift of r, i.e.
r(l) = rl+1rl+2 . . . rnr1 . . . rl. The convolution of r on x,
r(x), is the string r · x, r(1) · x, ..., r(n−1) · x.

Let p be a prime such that 2 is a generator modulo p.
Let n = p − 1. Then let Cn,l be the set of all strings of
length p. Let the value of the function described by a
string r on an n bit input x be the first l bits of r(1 ◦
x), where ◦ denotes concatenation. The results in [V]
imply that Cn,l, interpreted as a family of functions as
above, is universal. The length required to hash an n bit
string using this method is the first prime > n with 2 a
generator. If the extended Riemann Hypothesis holds,
this will be O(n) (see [V]) and, for infinitely many n,
will be n + 1. Since the prime involved is of size O(n),
rather than length O(n), every number between n and cn
can be tested until such a prime is found. For practical
purposes, the time taken by this process is irrelevant,
since p will be a fixed parameter.

Linear Congruential Hash mod p. Let p be a prime
of length n + 1. Let Ln,l,p be the set of pairs (a, b) of
residues modulo p. We let (a, b) represent the function
mapping input x to the l least significant bits of ax+ b,
where operations are performed modulo p. Now, ax+ b
and ay + b will be pairwise independent, i.e., for a fixed
x and y, ax + b and ay + b are equally likely to be any
pair of residues. However, their l least significant digits



will not be pairwise independent, since the distribution
on least significant bits of a random number modulo p
is not uniform. However, no sequence of length l has
probability exceeding 1/2l + 1/p; a simple calculation
shows that this suffices for this family of hash functions
to be almost universal.

Linear congruential hash functions as above require
only 2n + 2 bits to represent. The disadvantage of this
method is that it requires a prime of length n+ 1, which
can be found quickly probabilistically, but not yet de-
terministically. In practice, this is not really a problem,
since p is a fixed parameter. We could eliminate this
technical obstacle by working in the field with 2n ele-
ments instead, but calculations in an arbitrary field are
messier than those modulo a prime. When converted
into a prg, this method of hashing will be the closest to
the methods in general use.

4. The Leftover Hash Lemma

We now show how to extract quasi-random strings
from an unknown source of entropy. This is the key
step in proving that the above families of hash functions
yield quasi-perfect prg’s.

First, we need some definitions from probability the-
ory.

Definitions. Let D be a distribution on a finite set S.
Denote by D(s) for s ∈ S the probability D assigns to
s. For X ⊂ S, let D(X) be the probability that an el-
ement chosen according to D is in X. Let the collision
probability of D be the probability that two elements cho-
sen independently according to D are the same. We say
distributions D and D′ are statistically indistinguishable
within ε if, for every X ⊂ S, |D(X) − D′(X)| < ε. We
say D is quasi-random within ε on S if D is statisti-
cally indistinguishable from the uniform distribution on
S within ε.

The following lemma is a somewhat stronger and
cleaner version of a lemma in [ILL]; the strengthened
version and proof found here are due to Rackoff [R].

Leftover Hash Lemma. Let X ⊂ {0, 1}n, |X| ≥ 2l.
Let e > 0, and let H be an almost universal family of
hash functions mapping n bits to l − 2e bits. Then the
distribution (h, h(x)) is quasi-random within 1/2e (on
the set H × {0, 1}l−2e), where h is chosen uniformly at
random from H, and x uniformly from X.

We first show that the collision probability of the dis-
tribution (h, h(x)) is close to that of the uniform distri-
bution on H × {0, 1}l−2e. We then show that if a distri-
bution on a set S has collision entropy close to 1/|S|, then
that distribution is quasi-random on S . More formally,

Claim 1. The collision probability of the distribution
(h,h(x)) is at most (1 + 2/22e)/(|H|2l−2e).

Proof. The collision probability is the probability that
for h1, h2 ∈ H, x1, x2 ∈ X all randomly chosen, both
h1 = h2 and h1(x1) = h2(x2). This is 1/|H| times the
probability that, for x1, x2 ∈ X,h ∈ H randomly cho-
sen, h(x1) = h(x2). If x1 6= x2, this probability is at
most 1/2l−2e+1/2n by the definition of almost universal.
Since |X| ≥ 2l, the probability that x1 = x2 is at most

1/2l. Therefore, the collision probability is bounded by

1/|H| · (1/2l−2e + 1/2n + 1/2l) ≤ (1 + 2/22e)/(|H|2l−2e).

Claim 2. Let D be a distribution on a finite set S. If
the collision probability of D is at most (1 + 2δ2)/|S|,
then D is quasi-random on S within δ.

Proof. By contradiction. Assume D were not. Then
there exists an X ⊂ S with D[X] > |X|/|S| + δ. With-
out loss of generality, assume the above inequality is an
equality. The collision probability of D is the proba-
bility that, for d1, d2 randomly chosen according to D,
d1 = d2. The conditional probability that d1 = d2 given
that both are in X is at least 1/|X|; similarly, the con-
ditional probability given that both are in S − X is at
least 1/(|S| − |X|). Thus, the collision probability is at
least

D(X)2

|X|
+

(1−D(X))2

|S| − |X|
=

1

|S|
+

δ2

|X|
+

δ2

|S| − |X|

after substituting for D(X) and simplifying. This last
expression is minimized when |X| = |S|/2, so the col-
lision probability is at least (1 + 4δ2)/|S|, contrary to
assumption.

The Leftover Hash Lemma follows from combining
Claims 1 and 2.

5. PRG Based on Hash Functions

In this section, we apply the results of the previous
section to show that any family of almost universal hash
functions can be used to construct a quasi-perfect pseu-
dorandom number generator. In particular, this yields
modified versions of linear congruential and shift register
generators which are provably quasi-perfect.

Construction of PRG. Let r, k, k′ be integers. Let H
be a family of almost universal hash functions mapping
r bits to r − k′ bits. The pseudorandom generator takes
as a seed an r bit string x, h ∈ H, and a sequence of
k − 1 strings of length k′, s1, s2, . . . , sk−1. It outputs k
r bit strings x1, . . . , xk defined as follows:

• x1 = x.

• xi+1 = h(xi) ◦ si.

In other words, to get the next string in the sequence,
hash the previous string, and add new random bits to
replace the bits lost in hashing. In the case of the lin-
ear congruential hash, it is the same as first applying a
linear congruential generator to x, then replacing the k′

most significant bits of the result with new random bits,
repeating this operation k times.

Theorem 2 Let A be a BPP algorithm with error a con-
stant < 1/2, using r(n) random bits on an input of length
n. Let k be any positive integer, k′ = 4k, r = r(n). Let
A′ be the following algorithm. A′ first produces a ran-
dom output x1, ...xk of the Hash Based Generator with
parameters r, k, and k′. A′ simulates A on the input us-
ing each of the xi and takes the majority output. Then
A′ has error probability 2−Ω(k).



Proof.The idea is that the only information about x1
that we use is the single bit, “Does A accept using ran-
dom tape x1?”. Given this information, the conditional
distribution of x1 still has almost r bits of entropy. The
Leftover Hash Lemma gives us a way of “recycling” al-
most all of this entropy for future use.

Without loss of generality, assume the input in ques-
tion is in the language. Thus, the set of random tapes
which cause A to accept has size at least (2/3)2r. Let
X be an arbitrary subset of the accepting strings of the
aforementioned size, and let b(z) = 1 if z ∈ X, and 0
otherwise. We claim that for 1 ≤ i ≤ k, the distribu-
tion b(x1), ..., b(xi), h, xi+1 is statistically indistinguish-
able, within 2i/22k, of the distribution consisting of i
independent coin tosses of bias 2/3, followed by a ran-
dom h ∈ H and a random r bit string x. We prove this
claim by induction on i.

For i = 1, this claim follows from the Leftover Hash
Lemma: X and its complement have size at least 2r/3
so, for j ∈ {0, 1}, the distribution (h, h(x1)) given that
b(x1) = j is quasi-random within 2/22k. The claim fol-
lows, since x2 is simply h(x1) concatenated with truly
random bits.

Assume the claim is true for i− 1. Then the distribu-
tion b(x1), ..., b(xi−1), h, xi cannot be distinguished from
i−1 independent 2/3 biased coin flips, followed by a ran-
dom h and x, with probability exceeding 2(i − 1)/22k.
From the proof for i = 1, for h and x picked accord-
ing to the latter distribution, b(x), h, h(x) is be quasi-
random within 2/22k. Thus, a way of distinguishing
b(x1), . . . , b(xi), h, xi+1 from a random sequence of the
same form with probability 2i/22k would provide a way
of distinguishing the distribution b(x1), ..b(xi−1), h, xi
from a random sequence of the same form with proba-
bility 2(i− 1)/22k, contrary to the induction hypothesis.

Using this claim when i = k, we see that the sequence
of b(xi)’s is statistically indistinguishable within 2k/22k

from k random independent coin flips of bias 2/3. There-
fore, the probability that the majority of the b(xi) are
1 is 1 − 2−Ω(k), since this last is true for independent
coin flips of bias 2/3. Since all elements of X cause A to
accept, we are done.

Remark. Using either the Shift Hash or either Linear
Congruential Hash, the above algorithm will use O(r +
k2) random bits to obtain an error probability of 2−k.

In particular, for k = r1/2, we obtain an error of 2−r
1/2

using O(r) random bits. By “bootstrapping,” we can

reduce this error to 2−r
1−γ

using only O(r) random bits.

6. Recycling Random Bits for Arbitrary
Distributions

In this section, we generalize the technique of recycling
random bits from “Yes” or “No” type algorithms to ar-
bitrary distributions. This might be particularly useful
for scientific simulations, where many bits are used, but
only a few measurements of an experiment are recorded.
The methods presented here could be used to recycle
these bits for use in future experiments, or even for later
stages of the same experiment. Other situations where
these techniques might be used are: cryptography, where

it might be necessary to generate many keys or problem
instances from a certain distribution, such as a long list
of primes, or pre-factored Blum integers; approximation
algorithms such as in [JVV], where many samples from a
distribution are used to determine a succinctly describ-
able quantity; or any probabilistic algorithm which has a
subroutine or subroutines which output fewer bits than
the amount of randomness they use.

The methods presented here can also be used to gen-
erate a random prime, for example, using few random
bits. This will appear in the final version.

We now define the entropy of a distribution.

Definition. Let D be a distribution on a finite set S.
Then the entropy of D is given by∑

s∈S
−D(s) log(D(s)) = ED[− log(D(s))]

where ED(·) denotes the expectation of (·) with s chosen
according to D.

Intuitively, the entropy of a distribution measures the
amount of randomness in the distribution. We talk of
entropy as being measured in “bits”. The uniform dis-
tribution on a set S has entropy log(|S|).

Theorem 3 Let D(z) be an indexed family of distribu-
tions so that D(z) can be sampled from in polynomial-
time using r(|z|) random bits. Let E(z) be a polynomial-
time function so that E(z) is always larger than the en-
tropy of D(z). Then t samples from D(z) can be made
in polynomial time using E(z)t + O(t5/6r(|z|)) random
bits, so that the sequence output is statistically indistin-
guishable from a random such sequence within an expo-
nentially small (in t) error.

Note. If E(z) gives a close bound on the entropy,
and the entropy is always non-negligible (say, at least
1/poly(n)), then, for sufficiently large t(n), the amor-
tized random bits per sample is the entropy +o(1). This
is the information-theoretic lower bound. Thus, the
above theorem can be thought of as an effective version
of Shannon’s Theorem [Sh].

We require some lemmas from probability theory. The
following lemma follows from the Martingale Tail In-
equality [Sp].

Lemma 4 Let D be a distribution on the interval [a, b],
with expectation E. Let t be a positive integer, and let
0 < α < t1/2. Pick d1, . . . , dt independently according to
D. Then

Pr[|
∑

1≤i≤t

di − tE| > αt1/2(b− a)] < 2e−α
2/2

Corollary 5 Let f be a function on {0, 1}r. Let E be
the entropy of the distribution f(x) for x chosen ran-
domly. Let f t be the function mapping the tr bit string
x1◦. . .◦xt to f(x1)◦. . .◦f(xt). Then, for x = x1◦. . .◦xt
chosen at random, with probability at least 1 − 2e−α

2/2,

f t(x) has at least 2(r−E)k−rαt1/2 pre-images under f t.



Proof.Apply the previous lemma to the distribution
D = log|f−1(f(x))|. D is a distribution on [0, r] with
mean r − E. The log of the number of preimages of x
under f t has the same distribution as the sum of t ran-
dom elements of D.

Proof of Theorem 3. For input parameter z, let
r = r(|z|), E = E(z), D = D(z), and let T be the num-
ber of samples desired. Let R = rT 2/3, k = T 1/3, and
k′ = ET 2/3 + 2rT 1/2. Use the Hash Based prg, with
parameters R, k, and k′, to generate k pseudo-random
numbers x1, . . . , xk of length R (using O(R + kk′) =
O(ET+rT 5/6) bits.) Let A be the algorithm which takes
an R bit number, divides it into T 2/3 blocks of size r,
and uses each block to simulate the sampling algorithm.
Output A(x1), . . . , A(xk), a total of T outputs. We claim
this output is statistically indistinguishable from T in-
dependent samples from D.

Analogously to Theorem 2, we prove, by induction on
i, that the distribution A(x1)...A(xi), h, xi+1 is indistin-
guishable from the distribution d1, ..di, h, x

′, (i random
samples from D followed by a random h ∈ H and R bit

string x′) within 4ie−T
1/3/2. We prove the case i = 1;

the induction step is exactly as in Theorem 4.1.
Let E′ ≤ E be the entropy of D. Note that, by Corol-

lary 5, for x a random r bit string, A(x) has at least

P = 2(r−E′)T 2/3−rT 1/2

pre-images with probability at

least 1 − 2e−T
1/3/2. (Here, we use t = T 2/3, α = T 1/6).

Assume y = A(x) has at least P pre-images under A; let

X be the set of pre-images of y. |X| ≥ P ≥ 2R−k
′+rT 1/2

,
so applying the Leftover Hash Lemma to X, we have
that the distribution h, x2 given that x1 is in X is quasi-

random within 2−rT
1/2/2. Since this holds for all such y,

we conclude that the distribution A(x1), h, x2 given that
A(x1) has at least P pre-images is statistically indistin-
guishable from A(x1), h, x′ given that A(x1) has at least
P preimages. Since this event occurs with exponentially
high probability, we are done.

An even more general theorem along these lines can
be proved.

Theorem 6 Let a probabilistic task on r bits mean a
circuit C with r inputs, and a number E > 1 which is
at least the entropy of the distribution DC given by C(x)
for x chosen randomly. To fulfill a task means to pro-
duce an element according to DC . A request distribution
is a distribution on sequences of tasks, so that the task
requested at a given time depends only on the outputs
of the previous tasks (when fulfilled). Then there is a
polynomial-time algorithm which fulfills tasks on-line us-
ing, in the limit, o(t) +

∑
1≤i≤tEi random bits to fulfill

the first t tasks to within an exponentially small statis-
tical error, when run on any request distribution for a
polynomial number of requests.

The proof is similar to that of the last theorem.
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