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ABSTRACT: Motivated by applications in Markov estimation and distributed computing, we 
define the blanket time of an undirected graph G to be the expected time for a random walk 
to hit every vertex of G within a constant factor of the number of times predicted by the 
stationary distribution. Thus the blanket time is, essentially, the number of steps required of 
a random walk in order that the observed distribution reflect the stationary distribution. We 
provide substantial evidence for the following conjecture: that the blanket time of a graph 
never exceeds the cover time by more than a constant factor. In other words, at the cost of a 
multiplicative constant one can hit every vertex often instead of merely once. We prove the 
conjecture in the case where the cover time and maximum hitting time differ by a 
logarithmic factor. This case includes almost all graphs, as well as most “natural” graphs: 
the hypercube, k-dimensional lattices for k 2 2, balanced k-ary trees, and expanders. We 
further prove the conjecture for perhaps the most natural graphs not falling in the above 
case: paths and cycles. Finally, we prove the conjecture in the case of independent stochastic 
processes. 0 1996 John Wiley & Sons, Inc. 
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1. INTRODUCTION 

A random walk on a connected, undirected graph G with n vertices is a Markov 
chain whose states are the vertices of G .  The walk begins with a token at some 
vertex u ,  and at each tick of the clock, the token moves with equal probability to 
any vertex adjacent to its current position. If instead the transition probabilities are 
biased according to edge weights, one obtains a general reversible Markov chain 
(to which most of the following remarks also apply). 

Random walks on graphs have proved to be a useful tool in several aspects of 
the theory of computing, as well as an elegant subject for mathematical analysis. 
The most notable, perhaps, of recent applications has been to polynomial-time 
randomized approximation algorithms (e.g., [16, 10, 1211, but there have also been 
uses in space complexity [4], online algorithms [9], and distributed computing L1.51. 

There are at  least three graph parameters of the form “expected number of 
steps of a random walk before X happens” that have been extensively studied. The 
mixing time is the least t such that the distribution of the walk at step t is 
approximately (within variation distance 1/2 of) the stationary distribution; the 
maximum hitting time, denoted by H ,  is the expected time to reach u from u ,  
maximized over u and u ;  the maximum couer time, denoted by C, is the expected 
time to hit all vertices, maximized over starting vertex. 

To these we add a fourth parameter, larger than the others, which is described 
roughly as the expectation of the least t such that by step t the walk has hit every 
vertex about the expected number of times predicted by the stationary distribution. 
We call this parameter the “blanket time,” denoted by B. Thus, for a regular 
graph, B is the least positive t before all vertices are covered f l ( t / n )  times. The 
blanket time is quite different from the mixing time in that it requires the observed 
data from a single walk to reflect the stationary distribution. 

In studying blanket time we are motivated by several problems arising in 
computer science. First, the vertices (states) of an unknown random walk (resp. 
Markov chain) may be observed with the object of estimating the stationary 
distribution. The blanket time is an indication of how many observations must be 
made. An online algorithm, for example, may attempt to organize a data structure 
in accordance with a presumed stationary distribution for a Markov input model; 
the blanket time then indicates how long it takes for the process to settle down. 
This is also relevant to the well-studied and more difficult program of inferring a 
Markov chain from the labels of the edges traversed [5, 191. 

Blanket time arises naturally also in randomized distributed algorithms of 
theoretical interest, such as token management systems proposed by several 
authors [6, 151. Suppose that a token (representing, e.g., priviledged access to a 
critical section) is passed randomly from processor to processor in a network: How 
long will it be before every processor has owned the token about as long as it is 
supposed to? Even if the network is not synchronous, the imposition of a fairness 
condition requiring processors to be active appriximately equally often allows us to 
answer the above question using blanket time. 

In these applications, one obviously needs to wait at least until all states 
(processors) have been hit; in other words, B 2 C .  However, we have come to 
believe that the following striking converse is true: B = O(C) .  If true this would of 
course strengthen all of the many results bounding cover time for various classes of 
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graphs: Not only is each vertex visited once, but each is visited the “right” number 
of times. 

We support this conjecture with three results. To motivate the first, one very 
useful bound on the cover times is C = O(H log n )  11, 181. We strengthen this by 
showing that in fact B = O(H log n). This establishes our conjecture in the very 
common case where C = O(H log n).  This is the case for almost all graphs, as well 
as most “natural” graphs: The hypercube [l], k-dimensional lattices for k 2 2 [ l ,  
241, balanced k-ary trees [23, 11, 241, and expanders [7, 20, 61. 

The ‘‘classic’’ examples of graphs for which C = O ( H )  are paths and cycles. In 
our second result, we show that for these graphs our conjecture also holds. Aldous 
[3] has subsequently shown that this second theorem also follows from deep but 
well-known facts about Brownian motion [22]. Our proof, on the other hand, is 
elementary. Neither proof, however, appears easy to generalize. 

Finally, we prove the conjecture in the case of independent stochastic processes 
(current state not dependent on previous state). It turns out that we are able to 
prove a theorem (Theorem 1 below) that simultaneously handles this case and the 
case where C = O(H log n). 

2. DEFINITIONS AND NOTATION 

The random walk is performed on a connected, undirected graph G(V,E).  We 
define the following, generally using boldface to denote random variables: 

n = IVI, 
rc = deg( u)/21EI is the stationary probability at vertex u ,  
E,( -) is the expected value of (.) in a random walk starting at vertex u ,  

Hi, is the time to first visit vertex u ,  

H,: = maxu f v t EUHLJ 7 

ff = max,,,. t v {  E U H J  3 

c = maxi, t v t 
C is the cover time, i.e., min{t : (Vu)H,,  s t ) ,  

N,,( t )  is the number of time vertex u is visited by time t. 
3 

We can now define blanket time, and our conjecture. Blanket time will come 
with another parameter 6, which represents the ratio of the number of times u 
must be hit to the number that it should be hit. 

Definition. 
&rut). The blanket time B, = max,,, E,B,. 

For 6 E [0, l), define the random uariable B, = min{t : (Vu)N,(t) > 

Note that B, = C denotes the ordinary cover time (because of the strict inequality). 
Our conjecture may now be stated: 

Conjecture. There exists 6 ,  a > 0 such that for all graphs, B6 I aC. 

This is equivalent to saying that the expected time until each vertex u is visited 
IT,,,C times is O(C) .  
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There is also a strong form of our conjecture, which we also prove in our special 
cases except for the case of paths and cycles: 

Conjecture (Strong Form). 
B, - , 5 a,C. 

For all E > 0, there exists a ,  > 0 such that for all graphs, 

3. CONJECTURE IN THE CASES C=@(H log n )  AND INDEPENDENT 
STOCH ASTl C PROCESSES 

The first special case on which one might wish to test the blanket time conjecture is 
the Markov chain in which all transition probabilities are equal; that is, a sequence 
of independent, discrete, uniform random variables. The cover time in this case is 
the solution to the famous “coupon collector’s problem.” If there are n coupons to 
be collected, then it is easy to see that the expected time to collect at least one of 
each is 

n 5 - n  In n. 
i = l  n - i +  1 

How much longer does it take to get a representative collection? In [17] the answer 
can be found as a consequence of Lemma 11, (Chap. 2, Section 6, p. 113): If cn In n 
coupons are collected, where c is a constant greater than 1, then the least- 
collected coupon will be represented by about 6c In n coupons, where 6 is the 
positive root of 

6+c( ln  6 -  6 + 1 )  = O .  

It follows that for coupon collecting, the blanket time B, is asymptotically cn In n,  
where c = h, provided 6 is large enough so that c > 1. For example, 
B , / 2  - 2.59n In n, so that at the cost of waiting 2.59 times as long as necessary for 
a single complete collection, we can have half the number of complete collections 
possible in the given time. 

The case of nonuniform i.i.d. random variables, i.e., nonequiprobable coupons, is 
considered in [17] as well as other articles on coupon collecting (see, e.g., [13, 21, 
141). Although the cover time problem is solved, the literature does not appear to 
supply the means for computing blanket time in the non-uniform case. 

However, using a result of Aldous [21, we are able to derive the result for 
independent stochastic processes from our theorem below, which covers Markov 
chains in which C = O ( H  log n). 

Define S as the real number satisfying 

c e-.Y/H, = e-l. 

U € V  

We first show 

Lemma 1. C < 2eS. 

ProoJ: We extend the proof in [ l ,  231 that C = O(H log n). For any vertex u ,  
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Pr,[H, 2 eH,] 4 l / e ,  so for integral k ,  Pr,[H, 2 ekH,l I e - k .  Thus 

We now prove the much stronger theorem 

Theorem 1. B l P E  = O(S/e2>. 

Since S I H log n, this implies 

To move the case of independent stochastic processes, i.e., where there is no 
dependence on previous state, we make use of a known relationship between the 
cover time and the parameter S defined above, namely, that C = O(S) (viz. Aldous 
[2]).  This gives 

Corollary 2. For independent stochastic processes, B, - = O ( C / e 2 ) .  

Note also that if there is a constant number of hard-to-hit vertices, then S and 
C are both O ( H ) ,  so the conjecture is proved in this case. 

Proof of Theorem 1. The outline of the proof is to show that any fured vertex is 
visited the appropriate number of times with high probability. To prove this, we use 
the fact that, although it may take a long time to reach a vertex, once we do, it 
takes the “appropriate” amount of time to visit it again. 

To simplify notation, we sometimes assume when it is insignificant that numbers 
are integers; moreover, we obtain a bound for B,  - 3 E .  

First walk for C steps, i.e., until all vertices are hit. Since C = O(S) ,  it suffices to 
show that for some constant a 2 1 / e ,  if we walk for an additional a(1 + E ) S  steps, 
with high probability all vertices are covered at least r,aS times. 

Let H i  be the time at which vertex u has been visited j times, and let 
k ,  = H,r,. Then E,Hti’ = k J r ,  = H,. Moreover, for any other vertex u ,  

so 

Pr,[H;u 2 2eHU] < l / e .  

Since u was arbitrary, 
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In order to apply the Chernoff bound, we define X = H:ts/4eH,. Then EX = 

1/4e, and 

CD 

E[ ex]  = lm Pr[ ex 2 y ]  dy = 1 Pr[X 2 In y]  dy 
y = o  y = o  

We now wish to add independent copies of Y = X - (1 + €)EX, and show that 
the sum is unlikely to be positive. To do this, it suffices to find a t > 0 that makes 
E[efY] < 1. This follows from Chernoff [8]; however, we proceed with the calcula- 
tion in order to find the dependence on E .  Using the Taylor series expansion, it is 
not hard to show that for 0 < t < 1, 

E[e"] < 1 + t E Y + ( t 2 / 2 ) E [ e Y - 1 - Y ] < 1  - - t /4e+2t2 .  

This last expression attains a minimum value 1 - e 2 / c ,  where c = 128e2 < 1000. 
Therefore, by Chernoff, if Yh is the sum of b independent copies of Y, then 

Pr[Y, 2 01 5 (1  - E2/c)h  < e-E2h/C. ( 1 )  

To translate this statement back to multiple hitting times for u,  note that the sum 
of b copies of H i  is equal to Htk. Thus (1) becomes 

since S 2 H. The theorem follows. 

4. CONJECTURE FOR THE CYCLE AND PATH 

It is clear that if the conjecture holds for the cycle, then it holds also for the path 
(note that we will not prove the conjecture in the strong form). 

Let G,, be the cycle on vertices 0,1,. . . , n - 1 with the vertices regarded modulo 
n. Let CL*l denote the least t such that a particular random walk on G,, beginning 
at 0 has hit each vertex A times by time t ,  and lightface C r ]  denotes its 
expectation. Thus our conjecture for the cycle is equivalent to: 

Theorem 2. CF1 = O(n2).  

Prooj We show by induction on k that 
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where A 2 n = 2&, F2 = 1, and 5 = (1 + 9j-1/4)F,,2 for j > 2. To see that this 
would suffice to prove the theorem, note first that 

k - 2  k - 2  

so F,, is bounded by e48. We then have for any n, not necessarily a power of 2, that 
Cr1 I Cr’] _< CF’] I e4’(n’)’ < 4e4’n2, where n’ is the least power of 2 greater 
than or equal to n. 

We base the induction at n = 2, where C!,“] = 2h - 1 < F,An. Let us now fix 
n = 2k and A 2 n, so that we may assume 

Our approach will be to couple a random walk W on G,, with a random walk W’ 
on G,,,, as follows: Both walks begin at 0; whenever W steps 2i to 2i + 1 to 2i + 2, 
W’ steps from i to i + 1; whenever W steps 2i to 2i - 1 to 2i - 2, W‘ steps from i 
to i - 1. In other words, we treat the even vertices of G,, as a copy of G,,,. 

Let TI’ be the number of steps of W’ until vertex i is first visited A/2 + 4A3I4 
times, and T’ = max{Tz’) = Cl;h//22-4A3/4]. We will show that with high probability, 
before T’ steps W’, W will have covered all vertices of G,, A times in the required 
number of steps. 

Let X be a random variable which takes value 2 j  with probability 2-1 for j 2 1, 
so that in particular E(X) = 4. Then for any n and s, the number of steps of W 
between steps s - 1 and s of W‘ is distributed as X. The number of steps T taken 
by W while W’ takes T’ steps is the sum of T’ 2 nA/4 independent copies of X. 
Thus 

Pr[T < 4( 1 + 4h-’I2)T’] 2 1 - eP2’. 

Next we note that the number of hits of vertex 2i by W per each hit of i by W‘ is 
distributed as X/2, so, by a similar argument, vertex 2i of G,, is hit at least 
A + 4A3I4 times, with probability at least 1 - C2fi, already by T: steps of W’. Thus 
with probability at least 1 - (n/2)ep2fi, every even vertex of G,, is hit at least 
A + 4A3I4 times. 

Finally we need to cover the odd vertices of G,,; for this note that W is equally 
likely to step either to 2i + 1 or 2i - 1 when it is at 2i. Hence after W makes 
A + 4A3I4 visits to 2i, with probability at least 1 - eP2f i  that W will hit vertex 
2i + 1 at least h/2 times directly from 2i. Thus, with probability at least 1 - ne-’ fi 
each odd vertex of G,, is hit at least A/2 times from each side. 

We conclude that with probability at least 1 - (3n/2 + l)eP2 fi, W covers G,, in 
at most 4(1 + 4A-’I2)T’ steps. Thus 
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