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Abstract

In the leader election problem, n players wish to elect a random leader. The difficulty is that some coalition of
players may conspire to elect one of its own members. We adopt the perfect information model: all communication is
by broadcast, and the bad players have unlimited computational power. Protocols proceed in rounds: though players
are synchronized between rounds, within each round the bad players may wait to see the inputs of the good players.
A protocol is called resilient if a good leader is elected with probability bounded away from 0.

We give a simple, constructive leader election protocol that is resilient against coalitions of size βn, for any
β < 1/2. Our protocol takes log∗ n+O(1) rounds, each player sending at most logn bits per round. For any constant
k, our protocol can be modified to take k rounds and offer resilience against coalitions of size εn/(log(k) n)3, where
ε is a small enough constant and log(k) denotes the logarithm iterated k times. This is constructive for k ≥ 3.

The primary component of the above protocols is a new collective sampling protocol: for a set S of large enough
(polynomial) size, this protocol generates an element s ∈ S in a single round so that for any subset T ⊂ S, Pr[s ∈
T ] ≤ |T | |S|−α(1−β) for a constant α > 0.



1 Introduction
This paper is about three related problems which arise naturally in the study of distributed computing: leader election,
collective sampling, and collective coin-flipping. We begin with a discussion of coin-flipping, since this is perhaps the
most basic of the three.

In a distributed computing environment common random bits may be required. Collective coin-flipping is the
problem of obtaining such bits if some processors are faulty. If people are behind the processors, the faults may be
malicious; this is the case, for example, when coin flips are needed to gamble over the Internet [HS97]. Following
Ben-Or and Linial [BL90], we assume that faults may be malicious, that all communication is by broadcast, and that
the sender of every message is known with certainty. Processors may broadcast messages simultaneously.

The simplest method for n processors, called players, to generate a collective random bit is as follows. A suitable
function f : {0, 1}n → {0, 1} is chosen in advance. Then each player broadcasts a random ri ∈ {0, 1}, and the
collective random bit is taken to be r = f(r1, . . . , rn).

We allow a subsetB ⊂ [n] of bad players to collude to bias the resulting bit. In particular, they may not choose their
ri’s randomly. One obtains different models depending on whether the distributed environment is synchronous and
whether the bad players’ computational power is limited. This paper focuses on the most difficult of these possibilities.

In a synchronous environment, the players cannot see other players’ choices for ri. Thus, PARITY will output a
perfectly unbiased bit if even one player is honest. On the other hand, our model assumes an asynchronous environ-
ment: although messages are supposed to be sent in parallel, they may be sent in any order. Therefore, the bad players
may wait to see the honest players’ choices before they act. In this case, PARITY is foiled by just one bad player.

If the bad players’ computational power is restricted to polynomial-time, then the players can use cryptography to
communicate with each other privately (assuming sufficiently strong cryptography). The resulting problem is related
to Byzantine agreement. To avoid relying on unproven assumptions and to obtain the strongest possible results, our
model allows unlimited computational power for the bad players. This is called the perfect information model, and
was first introduced in the context of collective coin-flipping by Ben-Or and Linial [BL90].

A function f is called resilient if it gives rise to a robust coin-flipping protocol:

Definition 1. A family of functions fn : {0, 1}n → {0, 1}, n = 1, 2, . . ., is called b(n)-resilient if there exists γ > 0
such that for all n and B ⊆ [n] with |B| ≤ b(n), regardless of the strategy of the players in B,

γ ≤ Pr[fn(r1, . . . , rn) = 1] ≤ 1− γ.

Thus, for example, MAJORITY is c
√
n-resilient, for any positive c. The most resilient functions known were shown to

exist by Ajtai and Linial (there are non-constructive parts to their proof):

Theorem 1 ([AL93]). There exists a family of functions which is εn/ log2 n-resilient, for a small enough positive
constant ε.

There is also a lower bound:

Theorem 2 ([KKL88]). If b(n) = ω(n/ log n), then no family of functions is b(n)-resilient.

In order to achieve larger resilience, we enrich the class of protocols under consideration, allowing the protocols to last
many rounds and allowing players to send many bits in each round. Each round is asynchronous: within a round, the
bad players may wait to see the communication of the good players. Between rounds, the processors are synchronized.
The notion of resilience is extended in a natural way to this multi-round scenario.

We now broaden the discussion to include leader election protocols. In this case, the protocol is supposed to pick
a uniformly random leader among the n processors. Resilience is then defined as follows:

Definition 2. A leader election protocol is called b(n)-resilient if there is a constant γ < 1 which upper bounds the
probability that any coalition of size b(n) can elect one of its own members.

Note that if there is a k-round leader election protocol, then there is a k+1-round coin-flipping protocol with the same
resilience: in the last round the leader may flip the coin.
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Source Resilience Rounds Constructive? Bits/Round (Each Player)
[Sak89] O( n

logn ) n Yes log n

[AN93] O(n) nO(1) Yes 1
( 1
3 − ε)n n No 1

[BN] ( 1
2 − ε)n n No 1

[CL95] O(n) (log n)O(1) Yes 1
[ORV94] O(n) O(log n) Yes nO(1)

( 1
2 − ε)n O(log n) No nO(1)

[Zuc97] ( 1
2 − ε)n O(log n) Yes log n

THIS PAPER ( 1
2 − ε)n log∗(n) +O(1) Yes log n

O
(

n
(log(k) n)3

)
k For k ≥ 3 log n

Figure 1: Historical summary.

One example of a leader election protocol is the baton passing protocol. Initially, player 1 holds the baton. In
each round, the player holding the baton passes it to a player who has not yet held the baton. The last player to hold
the baton is called the leader. Saks [Sak89] showed that if the honest players toss the baton randomly (among those
players who have not yet touched the baton), this protocol is εn/ log n-resilient for a small enough positive constant ε.
Saks also observed that no protocol can be dn/2e-resilient (see [BN] for a proof).

The last decade has witnessed remarkable improvement in our understanding of this problem, culminating in con-
structive, O(log n)-round protocols which are βn-resilient [ORV94, Zuc97] for any fixed β < 1/2. The historical
summary in Figure 1 briefly charts this progress. We present a constructive leader election protocol requiring only
log∗ n+O(1) rounds to achieve βn-resilience, for any β < 1/2. This protocol can be modified to yield improved con-
stant round protocols, offering εn/(log(k) n)3-resilience in k rounds for a small enough constant ε. This is constructive
for k ≥ 3.

These protocols rely on a new protocol for collective sampling. The collective sampling problem is a generalization
of the problems discussed above: the objective of a collective sampling protocol for S is to produce an element s ∈ S
in a suitably robust fashion. Typically, the set S varies with the number of players (as in the leader election problem),
and a collective sampling protocol for S guarantees that for every target subset T ⊂ S, Pr[s ∈ T ] is suitably small.

Goldreich, Goldwasser, and Linial [GGL91] introduced the collective sampling problem, and demonstrated a
collective sampling protocol for which

Pr [s ∈ T ] ≤ (|T | / |S|)1−cµ(B)

where µ(B) is the fraction of corrupt players and c > 0 is some constant. This is optimal up to the constant c. Note
that such a bound on Pr[s ∈ T ] gives a “negligibility property”: if |T |/|S| = o(1) then Pr[s ∈ T ] = o(1).

Their protocol has a couple of disadvantages. First, µ(B) has to be a small enough constant (less than 1/c). Second,
their protocol takes many rounds, consisting of log |S| metarounds where each metaround consists of a polynomial
number of sequential calls to a collective coin-flipping subroutine.

Here we remove these disadvantages, and give a one-round protocol achieving

Pr [s ∈ T ] ≤ |T ||S|−α(1−µ(B))

for some α > 0 and large enough polynomial |S|. The running time is polynomial in |S|, unless |S| ≥ 2n, in which
case a simple algorithm running in time linear in log |S| will suffice. Although our bound on Pr[s ∈ T ] is useful for
any µ(B) < 1, it doesn’t yield the negligibility property. Observe, however, that it is unrealistic to achieve their bound
in one-round: if this were possible, then taking |T | = 1 and |S| = 2 would yield a one round collective coin-flipping
protocol.

We note that subsequent to our work, Feige [Fei] gave a simpler leader election protocol requiring the same
number of rounds as ours. Although he discusses sampling under the term selection, his work does not appear to offer
a comparable collective sampling protocol.
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Finally, we remark that if the bad players’ computational power were restricted to polynomial-time, and if suf-
ficiently strong cryptography exists, then the Byzantine agreement protocol of Feldman and Micali [FM97] may be
used to achieve an b(n− 1)/3c-resilient leader election protocol that takes a constant number of expected rounds.

The paper is organized as follows. In Section 2 we present the necessary background; in Section 3 we present
the one-round collective sampling protocol; in Section 4 we present the leader election protocol; and in Section 5 we
present constant-round variants of these protocols.

2 Preliminaries
We denote the set {1, . . . , n} by [n]. The logarithm base 2 is denoted log n and the natural logarithm lnn. In general,
we ignore rounding errors when their effect is insignificant.

Two combinatorial constructions shall be instrumental in the development of our protocol: a “balanced” poly-
logarithmic set system and a hitting set for combinatorial rectangles. These are introduced below in §2.1 and §2.2. As
a final preparatory step, §2.3 is devoted to bounding a class of recurrence relations related to the protocol.

2.1 Balanced Set Systems and Committee Sampling via Extractors
A paradigm appearing frequently in the leader election literature is the recursive application of “committee” selection.
Briefly, the description of the n-player protocol includes a collection of (overlapping) committees of the n players,
each of size n′ � n. A collective sampling protocol is invoked to select a committee from this collection, which
removes from consideration all players but those in the selected committee. The remaining players then carry out the
n′-player protocol to elect the final leader. Assuming that some β fraction of the players are corrupt, a natural property
to desire on the part of this family of committees is that regardless of which subset of the players are corrupt, very
few of the committees have much more than a β fraction of corrupt members. If the sampling protocol we apply is
suitably robust, we can then recurse on an appropriately balanced collection of players. Specifically, the committees
we use shall have the properties outlined in Definition 4, below.

Definition 3. A subset B ⊆ [n] has density µ(B) = |B| /n. A subset C ⊆ [n] is called B-saturated if |C ∩B| ≥
(µ(B) + 1/ log n) |C|.

Definition 4. Cn ⊂ 2[n] is a balanced set system if

1. ∀C ∈ Cn, |C| = (log n)
O(1),

2. for any B ⊂ X , the number of B-saturated committees is O(n1.1).

As one would expect, a random collection of nO(1) such sets can easily be shown to satisfy the above properties
with high probability, proving existence. We need an explicit construction, which is supplied by extractor constructions
(see [Nis96] for a survey of extractors and their applications). We restate the extractor construction we need in our
framework, making use of the observation that if there is a balanced set system of size f(n) and g(n) ≤ f(n), then
there is one of size g(n).

Theorem 3 ([Zuc97]). For all polynomial-time computable functions g : N → N with g(n) = nO(1), there is a
polynomial-time constructible family of balanced set systems of size g(n).

2.2 Hitting Sets for Combinatorial Rectangles
For a set S (such as the set of committees described above), our collective sampling protocol for S associates elements
of S with members of a sparse “hitting set” for combinatorial rectangles, defined below.

Definition 5. A combinatorial rectangle R in [a]d is a cross product R = R1 × · · · × Rd, with each Ri ⊂ [a]. The
volume of such a set is vol(R) = a−d ·

∏
i |Ri|.
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Definition 6. An (a, d, δ)-hitting set is a set H ⊂ [a]d which intersects every combinatorial rectangle of volume at
least δ. When the universe is understood, such a set will be referred to as an δ-hitting set.

An easy probabilistic proof shows that there exist (a, d, δ)-hitting sets of size dln(2)ad/δe. A constructive solution
is offered by Linial, et. al., who prove the following theorem:

Theorem 4 ([LLSZ97]). There exists an (a, d, δ)-hitting set of cardinality poly(log(d)a/δ) constructible in time
poly(ad/δ).

2.3 A Lemma about Poly-logarithmic Decay
In order to avoid logarithms of negative numbers, we define iterated logarithms as follows. For n ≥ 1 and k ∈ N,

log(k) n =

{
1 if log(k−1) n < 2,

log
(

log(k−1) n
)

otherwise,

with log(0) n = n. Then, for n ≥ 1, define log∗(n) to be the smallest natural number k for which log(k) n = 1. We
will need the following lemma:

Lemma 5. Let T : N→ N be a function given by the recurrence relation:

T (n) =

{
t0 for n ≤ nT ,
1 + T (f(n)) for n > nT ,

for a function f = (log n)O(1) and constants t0 and nT . Then T (n) < log∗ n+O(1).

Proof. Choose c so that f(n) < b(log n)cc for all sufficiently large n. For convenience, assume that c > 2. Then,
defining S(n) as

S(n) =

{
s0 for n ≤ nS ,
1 + S(b(log n)cc) for n > nS ,

there is an appropriate choice of the constants nS and s0 so that S is well defined and, for all n ∈ N, T (n) ≤ S(n).
For convenience assume that nS > c4c. Now, for n ≥ 1 and k ∈ N define L(k)(n) so that

L(k)(n) =

{
1 if L(k−1)(n) < 2,⌊
(logL(k−1)(n))c

⌋
otherwise,

with L(0)(n) = n. Then S(n) = s0 + L∗(n), where L∗(n) is the smallest k for which L(k)(n) ≤ nS . We prove by
induction on k that L(k)(n) ≤ (c4 log(k) n)c. The base case k = 0 is immediate. Assuming the inequality for L(k)(n),
we have

L(k+1)(n) =
⌊(

logL(k)(n)
)c⌋
≤
[
c log

(
c4 log(k) n

)]c
=
(

4c log c+ c log(k+1) n
)c
≤
(
c4 log(k+1) n

)c
,

since c > 2. Recalling that nS > c4c, the lemma follows.

3 A One Round Collective Sampling Protocol
We now turn our attention to the collective sampling problem. The sampling protocol below is the combinatorial core
of the leader election protocol of Section 4.
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Theorem 6. There is a constant c > 0 such that for any S of size at least nc there is a one round collective sampling
protocol for S so that for all T ⊂ S,

Pr[s ∈ T ] ≤ |T | |S|−(1−µ(B))/c
.

Furthermore, this protocol runs in time polynomial in |S| and n. When |S| ≥ 2n a naive protocol can achieve this
bound, with c ≤ 2, in time linear in log |S|.

Proof. First we describe the naive protocol for large |S|. Suppose |S| = 2sn for some integer s. Then associate S
with {0, 1}sn, have each player output s random bits, and concatenate the bits of the players. It is easy to check that
this achieves the desired bound with c = 1. In case 2sn < |S| < 2(s+1)n we may have some players flip s bits and
others flip s+ 1; this achieves the bound for c = 1 + µ(B)/s.

We now turn to the more difficult case of smaller S. Assume that |S| < 2n. Our starting idea is due to [ORV94]:
each player eliminates a random Θ((log |S|)/n) fraction of S. The lexicographically least element (say) that remains
is the selected element. This protocol ensures that with high probability no element of T remains. Unfortunately, this
would allow the bad players to eliminate every element of S.

Our key idea is to restrict the possible subsets of S that a player may eliminate. Below we give a method for this
which prevents the players from eliminating all of S.

We shall associate S with the elements of a δ-hitting set H in [a]n, for appropriately selected δ > 0 and a. For an
element s ∈ S, we let ~h(s) ∈ H denote the element of H associated with s. With such an association, the protocol
proceeds as follows. Each player i broadcasts a random ri ∈ [a], which removes from consideration all elements
s ∈ S for which h(s)i = ri. The lexicographically least element in

R = {s : ∀i, h(s)i 6= ri}

is then the element selected from S.
Fixing a subset T of S, we must then insure that

1. if |T | is small enough, then the probability that T ∩R 6= ∅ is small, and

2. R is non-empty.

Observe that if
δ ≤ (1− 1

a
)n = vol({~v ∈ [a]n : ∀i, vi 6= ri}),

then H contains an element of any set of form {~v ∈ [a]n : ∀i, vi 6= ri}, so that item 2 is guaranteed. Focusing now
on item 1, notice that for any t ∈ T ,

Pr[t ∈ R] ≤ (1− 1

a
)(1−µ(B))n

since the honest players select their ri uniformly in [a].
The statement of the theorem now follows by judicious selection of the parameters a and δ. Specifically, we shall

be interested in the case when δ < 1/n and a < n, so that the association of S with H requires that |S| ≥ δ−c ≥
poly(aδ−1 log n) for a constant c determined by Theorem 4. Assume that c ≥ 2. Satisfaction of item 2 above demands
that δ ≤ (1− 1

a )n. So assign

|S|−
1
c = δ = (1− 1

a
)n. (1)

Observe now that
Pr[∃t ∈ T ∩R] ≤ |T | (1− 1

a
)(1−µ(B))n ≤ |T | |S|

−(1−µ(B))
c ,

as desired. Finally, we observe that an acceptable value of a is induced by equation (1):

a−1 = 1− δ 1
n = 1− e ln δ

n = 1− e−
ln|S|
cn

so that

a−1 >
ln |S|
cn
− 1

2

(
ln |S|
cn

)2

= ω

(
1

n

)
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and hence a = o(n) (recall that |S| ≥ n); similarly, since |S| < 2n,

a−1 <
ln |S|
cn

≤ ln 2

c

and hence a > 2 (recall that c ≥ 2), as desired.

4 The Leader Election Protocol
The protocol we present below is recursive, each step discarding all but a small committee of players. The base case
invokes the following result of Boppana and Narayanan:

Theorem 7 ([BN]). For every β < 1
2 , there is a leader election protocol resilient against coalitions of size βn.

Although this is non-constructive in general, we need the result only for a specific (constant) value n0 so that the
protocol can, of course, be found by exhaustive search (trying all possible protocols and strategies for the bad players).
Feige [Fei] has observed that since n0 is constant, at this stage one can in fact use a simple one-round protocol in lieu
of Theorem 7.

Our protocol selects a committee of size (log n)O(1) in a single round, so we focus on functions

fn : Xn →
{
C ⊂ [n] : |C| ≤ (log n)

O(1)
}

where X is some appropriately selected domain.

Lemma 8. For all β < 1, there is a polynomial-time computable family of functions

fn : Xn →
{
C ⊂ [n] : |C| ≤ (log n)

O(1)
}

so that for any set B ⊂ [n] of size at most βn, the probability that for a random setting of the variables outside B,
some setting of the variables of B produces a B-saturated committee f(x1, . . . , xn) is at most O(1/n). The set X can
be taken to be {0, 1}logn.

Proof. Let cs be the constant guaranteed by Theorem 6 and set c > (2.1)cs
1−β . From Theorem 3, there is a balanced

set system C of subsets of [n] of size nc. Applying the one round collective sampling protocol of Theorem 6, the
probability that a B-saturated committee is selected is at most

O(n1.1)(n−
c(1−β)
cs ) = o

(
1

n

)
by our choice of c.

Theorem 9. For all β < 1
2 , there is a log∗ n+O(1) round leader election protocol resilient against coalitions of size

βn.

Proof. We apply Lemma 8 recursively until the resulting number of players is at most n0, a suitable constant to be
chosen later. We then apply Theorem 7. Lemma 5 shows that this protocol does indeed terminate in log∗ n + O(1)
rounds.

Fix β < 1
2 . There are two types of error to control. First, there is β̂(n), the maximum possible resulting fraction of

bad players when the protocol begins with n players (βn of which are corrupt), assuming only unsaturated committees
were chosen at each step. Then

β̂(n) ≤ β̂((log n)O(1)) + 1/ log n.

By choosing n0 large enough, we can ensure that β̂(n) is bounded away from 1
2 for all n, which is what we need to

apply Theorem 7.
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Second, there is the error E(n) that, with n starting players, a B-saturated committee is chosen somewhere in the
recursion. This error satisfies

E(n) ≤ E((log n)O(1)) +O(1/n).

This can be made arbitrarily small by choosing n0 large enough. In fact, we only need it to be less than 1, since we
ensure that conditional on reaching n0 players with all unsaturated committees, there is a constant probability that the
protocol given by Theorem 7 will select a good leader.

5 Constant Round Protocols
The requirement that the fraction of corrupt players, β, be (a constant) less than 1/2 manifests itself only in the base
case of the above leader election protocol. Indeed, the recursive committee selection process (i.e. Lemma 8) is well
behaved for any β < 1. Returning momentarily to the collective sampling problem, this observation induces a k-round
collective sampling protocol, for k = O(1), with

Pr [s ∈ T ] ≤ |T ||S|
−(1−β−o(1))

c′

assuming that |S| ≥
(

log(k−1) n
)c′

for an appropriate constant c′ > 0 (recall that the protocol of Section 3 required
that |S| ≥ nc). Sampling in a set of this size is achieved by selecting, in k − 1 rounds, a committee C of players for
which with high probability

• |C∩B||C| < µ(B) +O
(

1
logn

)
, and

• |C| ≤ |S|
1
c , where c is the constant of Theorem 6,

and then applying the protocol of Section 3. The error in this protocol is dominated by the error in the last round.
In similar fashion, coupling Lemma 8 with the εn/(log n)2-resilient functions of Ajtai-Linial (see Theorem 1,

above), we now present k-round leader election protocols which, for small enough εk > 0, are εkn/(log(k) n)3-
resilient.

5.1 The Functions of Ajtai-Linial and Sub-linear Coalitions
Definition 7. Let f : {0, 1}n → {0, 1} be a boolean function on variables {x1, . . . , xn}. The influence of a set
S ⊆ {x1, . . . , xn} on f , written If (S), is the probability that the function is undetermined by a random setting of the
variables outside S.

Ajtai and Linial [AL93] have shown the existence of a family of functions for which the influence of any set of
εn/(log n)2 variables is O(ε). As the base case of our constant round constructions, we need a family of functions
for which the influence of any set of εn/(log n)3 variables is O(ε/ log n). A simple adaptation of the proof in [AL93]
shows that the functions they construct also enjoy this property. For completeness, we briefly outline their construction
adapted to the case we need. We also provide a streamlined proof of one portion of their result.

Theorem 10 (Adapted from [AL93]). There is a sequence of boolean functions fn on n = 1, 2, . . . variables, having
expectation 1

2 +o(1), such that for any c > 2 and ε > 0, for any large enough n, the influence of any set of εn/(log n)c

variables is O
(
ε/(log n)c−2

)
. The time to construct such a function deterministically is nO(n2).

Proof. For a positive integer b, let n be the smallest multiple of b for which
(
1− 2−b

)n
b ≤ ln 2

n . Then b = log n −
2 log log n + o(1) and

(
1− 2−b

)n
b ≥ ln 2

n

(
1− (lnn)2

n

)
. For such a pair b, n, let P be the collection of all partitions

of {1, . . . , n} into classes of size b. The collection of sequences P = (P 1, . . . , Pn) with each P i ∈ P is denoted
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~P . Defining M to be the collection of all mappings m : {1, . . . , n} → {0, 1}, the collection of all sequences
m = (m1, . . . ,mn) with each mi ∈M is denoted ~M. Finally, for P ∈ ~P and m ∈ ~M, let f = fP,m be the function

f(x1, . . . , xn) =
∧

1≤i≤n

∨
1≤j≤n/b

∧
k∈P ij

(xk = mi(k)),

where P ij denotes the jth class of the partition P i. For convenience, let

f i(x1, . . . , xn) =
∨

1≤j≤n/b

∧
k∈Pij

(xk = mi(k)).

Definition 8. A partition P ∈ P and a set B ⊂ {1, . . . , n} are said to match if for each 1 ≤ k ≤ b, the number of
classes Pj of P with |B ∩ Pj | ≥ k does not exceed

2k

(
n

b

(
b

k

)(
|B|
n

)k)
.

Notice that if the partition P is selected randomly, then the probability that a certain Pj contains more than k

elements of B is at most
(
b
k

) ( |B|
n

)k
, whence the expected number of such Pj is at most nb

(
b
k

) ( |B|
n

)k
.

The proof proceeds in four steps:

1. For all P, and almost all m, the expectation of fP,m is 1
2 + o(1).

2. For almost all P and every setB ⊂ {1, . . . , n} with |B| = εn/(log n)c, the number of partitions P i in P failing
to match B is less than n/(log n)ω(1).

3. There is a constant ε0 > 0 so that for any partition P i in P and any mi ∈ M, the influence of any set
B ⊂ {1, . . . , n} with |B| ≤ ε0n/(log n)2 on f i is at most 1

n .

4. If P i and B match then the influence of B on f i is O
(
ε/(n(log n)c−2)

)
.

Steps 1 and 3 are exactly Propositions 5.4 and 5.1 of [AL93].

Proof of Step 4. (cf. Proposition 5.2 of [AL93].) Fix f i, given by P i and mi, and a matching set B. Notice that an
assignment to the variables outside of B leaves f i undetermined only when

1. every P ij not meeting B contains a variable xk for which xk 6= mi(k), and

2. for some P ij , meeting B, the assignment completely agrees with mi.

These two events are independent. The probability of event 1 is at most

(1− 2−b)
n
b−|B| ≤

(
ln 2

n

)1− b|B|n
= O

(
1

n

)
.

Now focus on event 2. For a fixed class P ij with
∣∣P ij ∩B∣∣ = k, the probability that xs = mi(s) for all s ∈ P ij \B

is 2k−b. Since P i matches B, the probability of event 2 is bounded above by∑
1≤k≤b

2k
n

b

(
b

k

)(
|B|
n

)k
2−(b−k) =

n

b2b

[(
1 +

4 |B|
n

)b
− 1

]
≤ n

b2b

[
exp

(
4 |B| b
n

)
− 1

]
.

Recalling that b = log n− 2 log log n+ o(1), we have b2b ≥ (1− o(1)) n
logn so that the above sum is

O

(
ε

(log n)c−2

)
.
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Anticipating the proof of step 2, we record Azuma’s inequality for discrete martingales.

Definition 9. A martingale is a sequence X1, X2, . . . , Xn of real valued random variables for which E[Xi+1 | Xi] =
Xi.

Theorem 11 (Azuma’s Inequality, [Hoe63, Azu67]). Let X1, . . . , Xn be a martingale with |Xi −Xi−1| ≤ 1. Then

Pr
[
Xn − E[Xn] > λ

√
n
]
≤ e−λ

2

2 .

See [AS92, §7] for a general discussion of discrete martingales and a proof of Azuma’s inequality.

Proof of Step 2. For convenience fix a specific partition P i and consider the uniform probability space on subsets B
of {1, . . . , n} of size εn

logc n . Let Ek be the event that

∣∣{j :
∣∣P ij ∩B∣∣ ≥ k}∣∣ ≥ 2kn

b

(
b

k

)(
|B|
n

)k
.

Then Pr[P i matches B] = 1−Pr[∪kEk] ≥ 1−
∑
k Pr[Ek]. As observed earlier, the expected number of Pj containing

more than k elements ofB is less than n
b

(
b
k

) ( |B|
n

)k
. Then, focusing our attention on those k ≥

√
log n, an application

of Markov’s inequality shows that Pr[Ek] ≤ 2−k = (log n)−ω(1).
Suppose now that k ≤

√
log n. Let X1, . . . , Xn be indicator random variables given by Xp = 1 iff p ∈ B. Then

define Y1, . . . , Ynb−1 so that

Yj =

{
1 if

∣∣P ij ∩B∣∣ ≥ k,
0 otherwise.

and set Y =
∑
j Yj . Our goal is to demonstrate strong tail bounds on the random variable Y . Finally, for 0 ≤ p ≤ n

define
Zp = E[Y | X1, . . . , Xp].

Then Z0 = E[Y ] is a constant random variable and Zn = Y . Notice that, by definition, E[Zp+1 | Zp] = Zp, so that
these Zp form a martingale. Furthermore, |Zp+1 − Zp| ≤ 1, the proof for which we defer for a moment. In this case,
application of Azuma’s inequality yields

Pr [Ek] ≤ Pr

[
Y − E[Y ] ≥

(
2k − 1

) [n
b

(
b

k

)(
|B|
n

)k]]
≤ Pr

[
Zn − E[Zn] ≥

(
2k − 1

)
n1−o(1)

]
≤ exp

(
2k − 1

4
n1−o(1)

)
=

1

logω(1) n
,

since the quantity c2kn
b

(
b
k

) ( |B|
n

)k
is at least n1−o(1).

Then
∑
k Pr[Ek] = (log n)−ω(1), and an application of Markov’s inequality shows that with probability 1 − o(1)

the number of P i which do not match B is less than n(log n)−ω(1).
We return to the proof that |Zp+1 − Zp| ≤ 1. It sufficies to show that for any ~x = (x1, . . . , xp) ∈ {0, 1}p,

|E[Y | Xi = xi(i ≤ p), Xp+1 = 1]− E[Y | Xi = xi(i ≤ p), Xp+1 = 0]| ≤ 1. (2)

The only interesting case is when wt(~x) < |B|. We establish (2) by observing that it holds under further conditioning.
In particular, for both conditioned probability spaces in (2), we think of first choosing a uniformly random set B′ of
|B| − wt(~x) − 1 elements from {p+ 2, . . . , n} to add to B. When Xp+1 = 1, this condition determines B; when
Xp+1 = 0, the last element of B is a random element from {p+ 2, . . . , n} \ B′. Conditioned on any such B′, then,
the resulting Y ’s can differ by at most 1, as we wanted.
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In [AL93], the above theorem is established for c = 2.
A function satisfying the conditions in the theorem can be found in time nO(n2). This follows from two observa-

tions. First,
∣∣∣~P∣∣∣ ≤ (n!)n, and

∣∣∣ ~M∣∣∣ = 2n
2

, so the number of possible functions is nO(n2). Second, a function can be
tested for the desired property in exponential time.

5.2 Constant Round Leader Election Protocols
With Theorem 10 in hand, it is not difficult to show that there exist one round leader election protocols resilient against
coalitions of size O(n/(log n)3):

Lemma 12. There exists a family of functions gn : Xn → [n] so that for any set of variables B of size εn
(logn)3 , the

probability that for a random setting of the variables outside B, there is a completion so that F (~x) ∈ B is O(ε). The
set X can be taken to be {0, 1}k, for k = O(log n).

Proof. Consider the probability distribution where each ~xi = xi1 . . . xik is selected independently and uniformly at
random in {0, 1}8 logn. Set Yj = fn(x1j , x2j , . . . , xnj) where fn are the functions of Theorem 10. This is a sequence
of independent 1

2 + o(1) biased bits. To correct the biases, we use von Neumann’s trick [vNe51]: collecting them into
pairs, Z1 = (Y1, Y2), Z2 = (Y3, Y4), . . ., consider the string N(Z1)N(Z2) . . . N(Z4 logn) where

N(a, b) =


1 if a = 1, b = 0,

0 if a = 0, b = 1,

Λ if a⊕ b = 0,

and Λ denotes the empty string. Then

Pr[N(Yi, Yi+1) = 1] = Pr[N(Yi, Yi+1) = 0] =
1

4
+ o(1).

Applying Chebyshev’s inequality, we see that with probability 1 − o(1), this sequence of independent and unbiased
values has length at least dlog ne. When this sequence is long enough, the first dlog ne bits are used to produce a value
v in [n], which is the value of gn on these ~xi. Otherwise gn(~xi) = 1. The mapping φ from {0, 1}dlogne to [n] used to
induce v can be chosen so that ∀B ⊂ [n],

∣∣φ−1(B)
∣∣ ≤ 2 |B|.

Fix a collection of variables B of size at most εn
(logn)3 . Notice that Pr[gn(~x1, . . . , ~xn) ∈ B] ≤ 2µ(B) + o(1) =

o(1). From the bound of Theorem 10, the probability that a random ~xi, i 6∈ B, results in a function which is non-
constant on the variables of B is at most k ·O(ε/ log n) = O(ε), which establishes the lemma.

N.b. It is in fact true that E[fn] = 1
2 + o( 1

logn ), so that one can avoid “correcting” the bias of these Yi, resulting in

functions gn : {0, 1}logn → [n].

Using this as a base case, the next result gives a k-round leader election protocol resilient against coalitions of size
εn

(log(k) n)3
.

Theorem 13. For k ∈ N, there is εk > 0 for which there is a k round leader election protocol resilient against
coalitions of size εkn/(log(k) n)3. This is constructive for k ≥ 3.

Proof. The first k − 1 rounds are given by the protocol of Lemma 8. The last round is given by the protocol of
Lemma 12. The errors are handled as in Theorem 9.

6 Open Question
An outstanding open question is whether there exists a constant round leader election protocol resilient against linear-
sized coalitions. It is unknown even whether there is such a one round protocol.

11



References
[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica, 13(2):129–145, 1993.

[AN93] Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions. SIAM Journal of
Computing, 22(2):403–417, April 1993.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.

[Azu67] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J. (2), 19:357–367,
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