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Abstract

The expected time for a random walk on an undirected graph G = (V, E) to visit all the
vertices is O(|V||E|) [AKLLR], and is O(|V|?) for regular graphs [KLNS]. Here we show that
both bounds hold even if we are required to traverse all the edges, although our bound for
regular graphs requires that the degree be |V|° for some § < 1.
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1 Introduction

A random walk on an undirected graph is the sequence of vertices visited by a particle that starts at
a specified vertex and visits other vertices according to the following transition rule: if the particle
is at vertex ¢ at time ¢, then at time ¢ + 1 it moves to a neighbor of ¢ picked uniformly at random.

Simulating a random walk on a graph requires very local information about the graph, while
random walks have very nice global properties. This makes random walks very useful in com-
putation, where limited resources are available to determine global information. Bounds on the
time of random walks to visit all vertices were important in showing that UNDIRECTED st-
CONNECTIVITY can be computed in RSPACE(logn) [AKLLR] and in analyzing the simulation
of token rings on arbitrary networks [BK].

Aleliunas et. al. [AKLLR] showed that the expected time to visit all the vertices, called the
cover time, is O(|V'||E|). A natural extension is the expected time to traverse all the directed edges,
where a random walk traverses directed edge (v, w) if it visits v and w consecutively. The most
natural method gives a bound of O(|V||E|log|V]). In this note we obtain a bound of O(|V||E|)
for this problem.

For regular graphs, Kahn et. al. [KLNS] have improved the bound on visiting all vertices to
O(|V'|?). Here again the most natural way to prove a similar result about traversing all directed
edges adds a log |V| factor, giving O(|[V|?1log |V|). We obtain a bound of O(|V|?) if the degree is
|V|? for some § < 1.

We prove all of our bounds in the more general setting of a directed graph where the indegree
equals the outdegree at every node. Our techniques rely on known bounds for c,.
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2 Notation

The random walk is performed on G(V, E), a directed graph with indegree equal to outdegree
everywhere. We define the following:

n=|V|.

m = |E].

E,(-) is the expected value of (-) in a random walk starting at vertex or edge .
T, is the time to first visit vertex or edge .

tmar = MaxXy pev{ LTy}

C, is the time to first visit all the vertices.

¢y = maxyey{FyCyp}.

C. is the time to first traverse all the directed edges.

ce = maxycy {EyCe}.

3 Main Result
We use the following lemma repeatedly:

Lemma 1 For any edge (v,w), E Ty < m.

Proof. E,T, 4 < EyTyw = Eywlyw = m, where this last equality is a standard fact (see e.g.
[AKLLR]). |

To get the most obvious upper bound on ¢, we note that for any two edges e; and ea, Ee, Te, <
tmaz +m. Thus the results of e.g. [Ma] imply that cc = O(tmaz logm + mlogm). For those graphs
having ¢, = Q(tmaz logn), such as the hypercube and k-dimensional toruses for k > 1 (see [A1] and
[Z]), this is tight to within a constant factor. This is because c. > ¢y, ¢y, = O(tmar logn) (see e.g.
[Ma]), and that c. = Q(mlogm) (see [A2]).

For general graphs, however, it gives a bound of ¢, = O(mnlogn). To improve this to O(mn),
we prove the following lemma:

Lemma 2 For any positive integer k, c. = O(k(c, + mH%)).

Proof. The idea we use is that once the walk reaches a vertex v, it is likely to quickly traverse all
of the directed edges coming out of v. What takes longer is to travel between two distant vertices.
Therefore, if we cover all the vertices and walk just a little longer, we will make reasonable progress
in covering all the edges.

More precisely, let the random walk begin at x. We divide our walk into T shorter walks: the
ith walk lasts for S; steps, where S; is the stopping time defined as follows: first cover all the
vertices, then walk another mitE steps; the time of the next visit to x is called S;. Here T is the
stopping time

T = min{t|all edges are traversed after S; 4+ S2 + ...+ S; steps}.



Then the S;’s are i.i.d., so using Wald’s identity (see e.g. [D], p.156),

T
Emce < Em[z Sz] — (E:BSZ)(EQ:T) (1)
i=1
Moreover,
1 1
E.S; <cy+m'te + max{F,T,} < 2¢, + mitE. (2)
u

Thus it suffices to bound E,T. Now define B;, ,, as the event in which the ith walk (for S;
steps) fails to traverse the directed edge (u,w). Because E,T{, ) < m and we walk for at least
mitE steps after visiting u,

Pr(B; ] < m—1/k,

Therefore,

PrT > 2k] = Pr|(3edge (u, w))(¥i, 1 < i < k)Biun] < m(m—/¥)% = L.
m

Because each new walk beginning at z is independent of previous ones,

1
Pr(T > 2kj] < —.
mJ

Thus -
1 2k
E,T <2 o

and using (1) and (2) gives the lemma.

Taking k = 2, for example, gives the general O(mn) upper bound.

For regular graphs with m = n?>~°, we can take k > 25;5 in the above lemma to achieve an

O(n?) bound. We remark that this bound cannot hold for all regular graphs, because the complete
graph takes time ©(n?logn).
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